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FOREWORD

The present AGARDograph was sponsored by the Computational Fluid Dynamics (CFD) Committee of the Fluid
Dynamics Panel recognizing the important role that mesh generation plays in Euler or Navier/Stokes finite difference
calculations currently of interest. It has been amply demonstrated that the viability of a numerical solution depends directly on
the quality of the mesh as measured by its spacing and orthogonality. Of particular interest is the mesh generation for complex
configurations, such as advanced fighters or logistic transports, where a multiblock mesh, for example, is necessary.

There exist numerous reports and books on the various methods of mesh generauon giving examples of interest. Ibe
present AGARDograph therefore will be directed towards presenting detailed case histories of mesh generation over complex
configurations to serve as a guide to users. In particular the emphasis will be on the difficulties encountered, and how they were
resolved.

Dr J.Steger, Senior Staff Scientist, at the NASA Ames Research Center and Dr J.Thompson. Professor of Aerospace
Engineering at the Mississippi State University, served as the principal authors contributing the Background and Concluding
Chapters. Both authors have contributed significantly to the mesh generation research and development. Dr Steger was
responsible for the case histories from North America, while Professor Thompson coordinated the contributions from Europe.

The CFD Committee and the Editor wish to express their appreciation to Dr Steger, Professor Thompson and the
contributors and their organizations, who generously shared their valuable experiences.

H.Yoshihara
Editor

AVANT-PROPOS

Le present AGARDograph a &6 patronne par le Comite "Calculs de Dynamique des Fluides" (CDF) du Groupe
"Dynamique des Fluides", en reconnaissant le r6le important que Ia generation de mailles joue dans les calculs des differences
finies d'Euler ou Navier/Stokes qui prosentent actuellement un grand intert. 11 a &t6 amplement dtmontre que la viabilito
d'une solution numerique depend directement de [a qualite de Ia maille mesurde par son espacement et son orthogonalite. La
gemnration de mailles est d'un int&r&t tout particulier pour des configurations complexes telles que les avions de chasse
modemes ou les avions de transport logistiques, dan- lesquelles une maille multibloc, par exemple, est necessaire.

11 existe de nombreux rapports et de nombreux livres sur les differents modes de generation de mailles qui donnent des
exemples interessants. C'est pourquoi le prdsent AGARDograph aura pour objet de presenter des 6tudes de cas de gtndration
de mailles sur des configurations complexes destindes 5 servir de guide aux utilisateurs. L'accent sera mis en particulier sur Ics
difficultes rencontrees et sur la faqon dont elles ont it rdsolues.

Le Dr J.Steger. Maitre de Recherchcs au Centre de Recherche de la NASA-Ames. et le Dr J.Thompson. Professeur de
Techniques Aerospatiales a r'Universit6 de l'Etat du Mississippi sont les principaux auteurs qui ont redige les chapitres
"Donnes de base- et "Conclusion". Ces deux auteurs ont contribu6 considerablement a la recherche et au developpement de
la generation de mailles. Le Dr Steger etait responsable des 6tudes de cas provenant d'Amerique du Nord, tandis que le
Professeur Thompson assurait la coordination des contributions europ~ennes.

Le Comite charge de la DFC et le Redacteur en Chef tiennent a exprimer leurs remerciements au Dr Steger. au Professeur
Thompson, ainsi qu'aux autres collaborateurs et A leurs organismes qui ont genereusement apporti une part de leur precieuse
experience.

H.Yoshihara
Redacteur en Chef
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1. flrUl

Over the last two decades efficient difference schemes for solving the nonlinear govern-
ing equations of aerodynamics have evolved for simulating the flow about relatively simple
configurations. For the most part these procedures use structured body-conforming curvilinear
grids, and are generally being extended to the treatment of more complex shapes by the use of
a composite grid approach. However, the development of suitable grid schemes Is still an on-
going process. and It Is pot clear that routine computational fluid dynamics (CFD) solution
procedure- hvP evolved, especially for high Reynolds number viscous flow simulation.

For this reason, this AGARDograph was initiated as an attempt to survey some of the capa-
bilities of the CFD community for griding compley three-dimensional configurations. The In-
tent of this AGARDograph Is to provide some insight as to the present state of grid generation
for aircraft configurations In order to help assess whether this task presents i long term
stumbling block to routine use of CFD in aerodynamic applications. At the heart of this
AGARDograph are solicited individual contributions describing experience in griding complex
configurations for flow simulation.

2. IUTUN ICTIO

Fluid mechanics is described by nonlinear equations which cannot generally be solved ana-
lytically, but which have been solved using various approximate methods including expansion
ane erturbation methods, sundry particle and vortex tracing methods, collocation and Integral
methods, and finite difference, finite volume and finite element methods. Generally the fi-
nite difference, finite volume and finite element discretizatlon methods have been the most
successful, but to use them It is necessary to discretize the field using a grid or mesh. The
mesh can be structured or unstructured, but it must be generated under some of the various
constraints described below, which can often be difficult to satisfy completely.

The generated mesh must be sufficiently dense that the numerival approximation is an ac-
curate one, but It cannot be so dense that the solution Is impractical to obtain. Generally
the grid spacing should be smoothly and sufficiently refined to resolve changes in the gradi-
ents of the solution. If the grid is also body conforming and curvilinear, the application of
boundary conditions is usually simplified. Body-conforming curvilinear grids may also allow
the use of various approximate equations such as the boundary-layer equations. The grid
should also be constructed with computational efficiency in mind. Various solution algorithms
are often highly degraded on grids that are too skewed, too high in aspect ratio, or poorly
organized. The accuracy of a numerical approximation can also be impaired if a grid changes
discontinuously or Is too skewed. Various vectorized computers often require well organized
data, and memory requirements can grow to impractical limits unless the data is organized.
Finally, the choice of a grid should not lead to overly complex computer codes.

The task of grid generation is not straightforward, given the algorithm and computational
constraints Imposed by current computers. It Is necessary to adapt the grid to the problem at
hand to achieve the best efficiency and accuracy. As a result the problem of grid generation
can still be as much an art form as i is a scientific discipline.

This AGARDograph begins with a brief review of some of the techniques that are available
for generating body-conforming curvilinear grids. In order to assess capabilities in grid
generation, colleagues at selected institutions were solicited to describe their experiences

and difficulties in grid generation of complex configurations. The intent here was not to de-

scribe the very latest in grid generation procedures, but to solicit honest comments about

what are the difficulties In generating practical grids and what steps are taken to meet these
difficulties. These experiences, which comprise the heart of this AGARDograph, are presented

as case histories in Section 4.

3. RMW

A cursory review of some of the techniques of numerical grid generatIon i. presented be-
low. More information on numerical grid generation and its application to the numerical solu-

tion of partial differential equations is given In a recent text on the subject (Ref. I).
Several surveys of the field have also been given (Refs. 2-5), and four conference proceedings
dedicated to the area have appeared (Refs. 6-9). The first of these proceedings also contains

a number of expository papers and other sources on the subject.

3.1 Grid Types

In the figure below are shown three basic grid treatments for meshing a simple body--a

rectangular or Cartesian-like grid, a structured curvilinear body-conforming grid, and an un-
structured triangularized grid.
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(b)

(a) (ci

Each grid type has advantages and disadvantnges. The rectangular grid is well-ordered, triv-
1a1 to generate, readily allows accurate interior difference approximations, and the represen-
tation of a difference approximation requires the minimum work per step. However, boundary
representation requires special logic, is generally of poor accuracy, and the grid does not
cldrer to efficiently resolve viscous boundary layers on curved boundaries. The curvilinear
body-conforming mesh is also well-ordered, allows higher order difference approximations, per-
mits simple and accurate boundary difference approximations, and can be clustered into gradi-
ent regions. It is especially well suited for viscous boundary layer approximation. However.
the governing equations are more complex to difference on a curvilinear grid (although body-
conforming grids often permit use of additional approximations), and grid generation, while
not difficult for simple bodies, Is no longer trivial. The unstructured triangularized mesh
has good grid concentration (i.e., triangles can be readily deleted in smooth gradient re-
gions) and the shape of the boundary curve Is readily conformed to. However, such a mesh is
poorly ordered and is therefore less amenable to the use of certain algorithms (e.g. ADI) and
vectorized computers. Mesh generation is also not trivial. Moreover, triangular meshes have

not been used for resolving high Reynolds number viscous boundary layers of practical inter-
est.

For a simple body shape, the use of a single body-conforming curvilinear mesh leads to
the most efficient solution procedure. As a result most current aerodynamic solution codes
employ a body-ccnforming structured, curvilinear grid. Considerable effort is now underway to
extend these procedures for complex thee-dimensional configurations, generally by using cmA
posite grid techniques.

3.2 Grid Structures

A curvilinear structured grid can be represented by a rectangular array of position vec-
tors:

CiJk ( 112,--,1; J-1,2,--,J; k-1,2,--K),

where the Indices i,J,k are identified with the three curvilinear coordinates. The position
vector C Is a three-vector giving the values of the x,y.z Cartesian coordinates of a grid
point. Since all increments In the curvilinear coordinates cancel out of the transformation
relations for derivative operators, there is no loss of generality in defining the discreti-
zation to be on integer values of these coordinates.

Fundamental to a body-conforming curvilinear coordinate system is the coincideree of some
coordinate surface with each segment of boundary of the physical region. This Is aom-
plished by placing a two-dimensional array of points on a physical boundary Segment and set-
ting these values in the array of position vectors with one Index conctant, e.g. in ijk with
I from I to I and j from I to J. The curvilinear coordinate k is thus constant on this physi-
cal boundary segment. With values set on the Sides of the rectangular array of position vec-
tars in this manner, the generation of the grid 15 accomplished by determining the values of
Clik in the interior of the rectangular array from the specified boundary values on it' sides,
e. by interpolation or a partial differential equation (PDE) solution. The set of values

C k then forms the nodes of a curvilinear coordinate system filling the physical region. A
phisical region bounded by six generally curved sides can thus be considered to have been
transformed to a rectangular computational region on which the curvilinear coordinates are the
independent variables.
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3.3 Composite Block Grids

Although in prineiple It Is possible to establish a correspondence between any physical
region and a single empty rectangular block for general three-dimensional configurations, the
resulting grid Is likely to be too skewed and Irregular to be usable when the boundary geome-
try i3 complicated. A better approach with complicated physical boundaries is to segment the
physical region into subregions bounded by six curved sides (four In 20). These subregions
may or may not ove-13p (_.f. Ret. 10). Each sub-grid is transformed to a rectangular block In
the computational region with its own curvilinear coordinate system irr-P~ctive of that in
the adjacent sub-regions.

T--E w
FC

This then allows both the grid generation and numerical solutions on the grid to operate
In a rectangular computational region regardless of the shape or complexity of the full physi-
cal region. rhe full region Is treated by performing the solution operation In all of the
rectangular computational blocks, With the composite framework, CII) solution procedures writ-
ten to operate on rectangular regions can be incorporated Into a code for general configura-
tions in a straighttcrward manner, since the code only needs to treat a rectangular block. The
entire physical field then can be treated in a loop over all the blocks. Such a composite
structure has been incorporated In several recent grid codes (e.g. Refs. 11-20 and the pape-s
Included In Section 4) of various degrees of generality (cf. also R~efs. 9 and 6).

The curved surfaces bounding the sub-regions In the physical region form internal Inter-
faces across which Information must be transferred, i.e., from the sides of one rectangular
computational block to th$e of another. Regardless Of whether the composite grid Is formed
using contiguous sub-grids (i.e. a blocked grid) or from overset (or overlapped) grids, these
Interface boundaries occur in pairs. For a blocked grid an Interface on one block is paired
with another on the same, or different, block, since both correspond to the same physical sur-
face. GrI d lines at the Interfaces may meet with complete continuity, with or without slope
continuity, or may not meet at all. The codes of Refs. 12, 14, 15, 17, 18, and 19 provide
complete continuity, white those of Refs. 16 and 20 are based on slope continuity.

3.4 Surface Grids

The specification of the boundary point distribution is a two-dimensional grid problem in
Its own rit, which can also be done either by interpolation or a PE solution. In general,
this is a 20 boundary value problem on a curved surface, I.e., the determination of the loca-
tions of points on the surface from specified distributions of points on the four edges of the
surface.

This Is best approached through the use of surface parametric coordinates, whereby the surface
Is first defined by a 20 array of points, rn. e-g. a set of cross-sections.
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The surface is then splined, acd the spline coordinates (u,v; surface parametric coordinates)
are then made the dependent variables for the interpolation or PDE generation system. The gen-
eration of the surface grid can then be accomplished by first specifying the boundary points
in the array Ci.1 on the four edges of the surface grid; converting these Cartesian coordinate

values to spline coordinate values (uii,vi) on the edges; then determining the interior val-
ues in the arrays uUj and via from thd ede values by interpolation or POE solution; and fl-
nally converting these spline values to Cartesian coordinates riJ"

Grid

surracer

The specification of the ID point distributions on the edg- nvn be done using certain
distribution functions based on hyperbolic functions which have been shown to give spacing
distributions that are optimum in the sense of controlling the truncation error induced by
spacing changes (cf. Refs. 1,21,22).

After the points on the physical boundary segments have been set on the sides of the rec-
tangular array, the grid is generated throughout the physical region by determuirg the Inte-
rior values in the arrays from the values set on the sides. This amounts to a boundary value
problem which can be approached either through interpolation from the boundary values, or
through the numerical solution of a system of partial differential equations with C as the
dependent variable nd t'e sot. boundary vY''ee -boundary nondit4n-

3.5 Orthogonality

Coordinate systems that are orthogonal, or at least nearly orthogonal, near the boundary
make the application of boundary conditions more straightforward. Although strict orthogo-
nality is not necessary, the accuracy deteriorates if the departure from orthogonality Is too
large. The implementation of algebraic turbulence models is more reliable with near-ortho-
gonality at the boundary, since info, ation _n hucs.' bou2ary
such models. The formulation of boundary-layer equations is also more straightforward and
unambiguous In such systems. It is thus better in general, other considerations being eq: l,
for grid lines to be nearly normal to boundaries.

3.6 Grid Generation Schemes

The generation procedures for curvilinear grids are of two general types: (1) by numerl-
cal solution of partial differential equations, and (2) construction by algebraic Interpola-
tion. In the former, the PDE system may be elliptic, parabolic or hyperbolic. Included in
the elliptic systems are both the conformal and the quasiconformal mappings, the former being
orthogonal. Orthogonal systems do not have to be conformal, and may be generated from nypere
bolic systems as well as from elliptic systems. Some procedures are designed to Droduce coor-
dinates that are nearly orthogonal. The algebraic procedures include simple normalization of
boundary curves, transfinite Interpolation finr boundary surfaces, the use of Intermediate
Interpolating surfaces, and various other related interpolation techniques.

The relative merits of the various types of grids and generation procedures have been
discussed in the various surveys noted above, as well as in the works cited therein.
Basically, the algebraic generation systems are faster, but the grids generated from partial
differential equations are generally smoother. The hyperbolic and parabolic generation sys-
tems are faster than the elliptic systems, but are more limited in the configurations that can
be treated. The elliptic systems are the most generally applicable with complicated boundary
configurations, but transfinite interpolation is also effective in the composite grid frame-
work.
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3.7 Algebraic Grid Generation

Algebraic grid generation consists of the determination of the interior values in the
rectangular array CI from the set values on the sides by interpolation. A number of dif-
ferent forms of inte , tation are discussed in Ref. 1. Such generation systems are surveyed in
Refs. 2,3 and 5 as well as in Refs. 23 and 24. Here only one widely used procedure, trans-
finite interpolation, will be briefly described.

A generally eff-ctive grid generation procedure is provided by the transfinite interpola-
tion technique (Refs. 25,26), in which all of the boundary values are matched by the interpo-
lation function. Transfinite interpolation in multiple dimensions can be built up of
one-dimensional interpolations as follows (cf. Ref. I for mre details).

One-dimensional interpolation between two boundaries on which the index i is constant is
given by

r - fii,j, k * (i - fi)r ,J, (M)-i~j,k iIjk i,,

where f, varies monotonically from f 1 -O to f 1 for !-1,2,...I. Analogous forms apply for
Interpolation in the j and k directions. Certain distribution functions based on hyperbolic
functions have been shown to be optimal in the sense of reduced truncation error (cf. Refs.
21,22).

If the interpolation operation given by Eq. (1) is defined as the "projector" P(i), i.e..

-P PM = f Ijk * (1 - fI)rljk (2)

then two-dimensional transfinite interpolation on a surface on which k is constant is accom-
plished by the projector

CiJk P )-P P(3)

where

p( ) J) Ifgj IJk * f 1 l - gj) I k

+(I - f I)gjriJk +(I - fi)(1 gj)rl lk (4)

and gj varies monotonically from gl-O to gj-1 for J-1,2.--,J.

/J

Analogous forms apply on surfaces on which I or j are constant.

The three-dimensional form then is given by the projector

h Jk e p M p lJ) + p W ) P(1)p(J) - p(J)p(k) _ (k)P M

+ pl0 pj)p (k) (5)

where



p(I) (jp(k) f ih Jg f g (1 -

f 1 1( - gJ)hkrl1K + I (I - g )1 - hk)r11

( (I - f1)gjhkEIJK * i - fl)gj(i - hk)rIJI

+ (0 - f1 )(1 - g )hkr,1 K

+ (I - fi)(1 - g (1 - hk)r111 (F

Here hk varies monotonically from n1-o to hk-1 for k-1,2,--,K.

General algebraic grid generation codes have been reported in Refs. 13, 17, and 27.

3.8 Elliptic Grid Generation

Since elliptic partial differential systems determine a fanction in terms or its valueF
on the entire closed boundary of a region, such a system can be used to generate the interior
values in the array ClJk from the values set on the sides. The properties of elliplic grid
generation systems are discussed in Ref. 1. The extremum principles that are erhlbited by
some elliptic systems serve to prevent the grid overlap that can occur with algebraic grid
generation in some configurations. Grids generated from elliptic systems also gererally tend
to be smoother than those from algebraic systems. In fact, it can be shown by the calculus of
variations that a grid generated as the solution of Laplace equations is the smoothest p:sl-
ble grid. The lines of such a grid tend to concentrate over convex portions of the ph~slcal
boundary and to be more widely spaced over concave portions, however.

Control over the spacing of the grid lines can be exercised by incorporating non-zero
Laplacians into the generation system. The most common form at present is the following sys-
tem:

,. n 3 nn

M-1 n-1 m n-I

where the gmn are the elements of the contravarlant metric tensor:

gmn . m n ()

and the Pn are the "control functions" which serve to control the spacing and orientation of
the grid lines In the field. The gmn elements are more conveniently expressed in terms of the
elements of the covarlant metric tensor, gmn:

gmn r m - 9)

which can be calculated directly. Thus

9 ' ikgJi - gitgjk
}

(m,l,J) cyclic, (n~k,i) cyclic

where g, the square of the Jacoblan, is given by

g - det Ig E{I- C xI ( 3) (I)

In thise relations, r is the Cartesian position vector of a grid point (C - ix * Iy * K), and
the E (1-1,2,3) are the three curvilinear coordinates.

Negitive values of the control function Pn cause grid lines on which i
n 

ts constant to
tend to move in the direction of decreasing n . and this feature can be used to concentrate
grid lines near other grid lines and/or points or in certaln regions in physical space. How-
ever, a more automatic procedure is to determine the control functions so as to reflect the
boundary point spacing into the field. (Laplace equations, i.e., with zero control functions,
tend to produce uniform grids in the field regardless of the concentration of p-it on the
boundary.) This is accomplished as follows (of. Ref. 1 for details of the developmentS.



En two dimensions, the projection of Eq. (7) along a coordinate line on which I (i.e. 4
varies yields the following equation for the control function P

1 on this line:

Ic J

P1 = -S1 (I2;

The first term here,

4, (ifl

contains only derivatives along the line, and hence can be evaluated from the point distribu-
tion on the line. This term is the logarithmic derivative of arc 

1
ength along the lin . in

the last term p
1 

is the radius of curvature of the line on which is constant that crosses
the line on which the control function P

1 
is to be e luated. This curvature is given by

n
2 

• r 2 k2-

- - [- 424] (in)

where D2 is the unit normal to the crossing line. Although It 1, the arc length spacing

along the line of evaluation, can be evaluated from the point distribution on that line, the

radius of curvature requires derivatives off that line. Analogous equations apply for the

evaluation of the control function P
2 

on a line on which j, i.e., 42, varies.

The arc length contribution, S
1
, and the arc spacing, jr,11, of the control function P

1

are evaluated on the two edges (J-f and J-J) on which I varies. The radius of curvature, P2

is also evaluated on these lines. These evaluations use

(J) I

(()

r r 1 -2r *r4141 " [ iJJ -i-iJ

on the J-J line, with analogous expressions on the J-1 line. The normal, 0
1
, needed for the

evaluation of p
2 

is

where k is the unit vector normal to the surface. Similarly, the arc length contribution to

P
2
, the radius of curvature P1 and the spacing ICE21 are evaluated on the other two edges (i-,

and i-I).

S
I  I ll o2

S ' It 22



The control functions in the interior are then evaluated by interpolating the components S,

It 11, and 02 one-dimensionally in the J-direction from the two edges on which they have been

evaluated, i.e., the J=1 and JJ lines. Similarly S2, IC 21, and Pa are interpolated In the

I-direction between the i-1 and i-I lines.

The control functions then are formed from these interpolated values:

P1 = -S1 + _ _ (15)

p =-s v(16)
2 2 P

2

In three dimensions the arc length contribution, S1, and the arc spacing, Ir I , are

evaluated on the four sides of the computational block on which i varies, i.e.. the sides J=1

and j-J and the sides k=1 and k=K. The radius of curvature, pl, is evaluated on the two sides

on which I is constant (i=1 and i=I) from the relation

-2 " C 2 -3 3 3 -
P, [v (17)

1fg f3 1 e3

arc length contribution curvature contribution

for P, for P,

Analogous evaluations are done for S 2 and IC 21 on the four sides on which j varies, for S3

and IC
3
1 on the four sides on which k varies, for P

2 on the two sides on which j is constant,

for p3 on the two on which k is constant. Then S
I 
and IC 11 are interpolated two-dimension-

ally in the J and k directions from the four sides on which I varies using transfinite inter-
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polation, and p, is Interpolated one-dimensionally in the I direction from the two sides on

which i is constant.

s2 , l i

s
3
. It 30

I 
1 t

P2

The control function P
1 

15 then evaluated from

P1 = -S1 
+  

l(18)

Analogous interpolations allow the evaluation of the other two functions.

General codes based on such elliptic generation systems appear in Refs. 12, 14-20. The
code of Refa. 16,20 uses an iterative adjustment of coitrol functions to achieve boundary

orthogonality, as can the code of Ref. 17, as follows:

A second-order elliptic generation system allows either the point locations on the bound-
ary or the coordinate line slope at the boundary to be specified, but not both. It is possi-

ble, however, to Iteratively adjust the control functions in the generation system of the
Poisson type discussed above until, not only a specified line slope, but also the spacing of

the first coordinate surface off the boundary is achieved, with the point locations on the

boundary specified (cf. Ref. 16).

In three dimensions the specification of the coordinate line slope at the boundary

requires the specification of two quantities, e.g., the direction cosines of the line with two
tangents to the boundary. The specification of the spacing of the first coordinate surface

off the boundary requires one more quantity, and therefore the three control functions in the
system Eq. (7) are exactly sufficient to allow these three specified quantities to be

achieved, while the one boundary condition allowed by the second-order system provides for the

point locations on the boundary to be specified.

To illustrate this development, an iterative procedure can be constructed for the deter-

mination of the control functions in two dimensions as follows (cf. Ref. 16). Consider the

generation system given by Eq. (7) in two dimensions (with EI . &, &
2 

. n, x
I 

- x, and x
2 
- y

here). On a boundary segment that is a line of constant n, and C, are known from the

specified boundary point distribution. Also I,i the spacing off this boundary, is speci-

fied, as is the condition of orthogonality at the boundary, i.e., tC " Cn - 0, But specifica-

tion of - /n y, together with the condition Ce.CnC-x~nyynO provides two equations

for the determination of x
n 

and y. in terms of the already known values of the x and y,.

Therefore Cn is known on the boundary.

Because of the orthogonality at the boundary, Eq. (7) reduces to the following equation

on the boundary:

Itn1 
2
(r nn - Pr) C&1

2
(t, - Q-n

) 
- 0 (19)

Dotting C, and rn Into this equation, and again using the condition of orthogonality, yields

the following two equations for the control functions on the boundary:

[S



10

- (20)

r *r r*'En " nn _E
n " E__ (21)

All of the quantities in these equations are known on the boundary except . (On a boundary
that is a line of constant F, the same equations for the control functions result, but now
with rt the unknown quantity.

The iterative solution thus proceeds as follows:

(1) Assume values for the control functions On the boundary.

(2) Solve Eq. (7) to generate the grid in the field.

(3) Evaluate Cnn on n-line boundaries, and Q,, on t-line boundaries, from the result of

Step (2), using one-sided difference representations. Then evaluate the control func-

tions on the boundary from Eqs. (20) and (21). Evaluate the control functions in the

field by interpolation from the boundary values.

Steps (2) and (3) are then repeated until convergence.

The analogous procedure for three dimensions is given In Refs. 20, 17, and 1.

3.9 Unstructured Meshes

An alternative to the structured quadralateral meshes that are discussed in this report
are the unstructured meshes composed of triangles in 2D or tetrahedrons in 3D (kef. 2b). The

unstructured mesh requires less ingenuity to devise (though not necessarily to code) for com-
plicated regions than does the structured mesh, but requires considerably more computer time
and storage, as well as a much more involved data handling procedure. Combinations of struc-
tured and unstructured meshes can also be used, with structured meshes near the bounda-ies

connected by unstructured meshes (Ref. 29).

3.10 Adaptive Grid Schemes

Finally, dynamically-adaptive grids continually adapt to follow developing gradients in
the physical solution. This adaption can reduce the oscillations associated with inadequate
resolution of large gradients, allowing sharper shocks and better representation of boundary

layers. Another advantageous feature is the fact that in the viscous regions where real dif-
fusion effects must not be swamped, the numerical dissipation from upwind biasing is reduced
by the adaption. Dynamic adaption is at the frontier of numerical grid generation and may

well prove to be one of its most important aspects, along with the treatment of real three-
dimensional configurations through the composite grid structure.

There are three basic strategies that may be employed In dynamically adaptive grids (cf.
Refs. 1,4) coupled with the partial differential equations of the physical problem. (Combina-
tions are also possible, of course.):

(1) Redistribution of a fixed number of points.

In this approach, points are moved from regions of relatively small error or solution
gradient to regions of large error or gradient. As long as the redistribution of
points does not seriously deplete the n mber of points in other regions of possible

significant gradients, this is a viable approach. The increase in spacing that must
occur somewhere is not of practical consequence if it occurs In regions of small error
or gradient, even though in a formal mathematical sense the global approximation is

not improved. The redistribution approach has the advantage of not increasing the cc.-
puter time and storage during the solution, and of being straightforward in coding and
data structure. The disadvantages are the possible deleterious depletion of points in

certain regions and the possibility of the grid becoming too skewed.

Recent examples of this adaptive approach in CFD are Ref. 30 in 2D and Ref. 31 in
3D.



(2) Local refinement of a fixed set of points.

In this approach, points are added (or removed) locally in a fixed point structure in
regions of relatively large error or solution gradient. Here there Is, of course, no

depletion of points in other regions and therefore no formal increase of error occurs.
Since the error Is locally reduced in the area of refinement. the global error does

formally decrease. The practical advantage of this approach is that the original

point structure Is preserved. The disadvantages are that the computer time and stor-

age increase with the refinement, and that the coding and data structure are diffi-

cult, especially for implicit flow solvers.

Recent examples of this adaptive approach in CFD are Ref. 32 and 33, both in 2D.

(3) Local increase in algorithm order.

In this approach, the solution method is changed locally to a higher-order approxima-
tion in regions of relatively large error or solution gradient without charging the
point distribution. This again increases the formal global accuracy since a local in-

crease is achieved without an attendant decrease in formal accuracy elsewhere. The

advantage is that the point distribution is not changed at all. The disadvantage Is

the great complexity of implementation in implicit flow solvers.

This adaptive approach has not had any significant application in CFD in multiple

dimensions.

Adaptive redistribution of points traces its roots to the principle of equidistribution
of error (of. Ref. 1,4) by which a point distribution Is set so as to make the product of the

spacing and a weight function constant over the points:

wax - constant (22)

With the point distribution defined by a function x(t), where E varies by a unit Increment

between points, the equidlstributlon principle can be expressed as

wx - constant (23)

This one-dimenslonal equation can be applied in each direction in an alternating fashion, but
a direct extension to multiple dimensions can be made in either of two ways as follows:

From the calculus of variations, Eq. (23) can be shown (cf. Ref. 1) to be the Euler

variational equation for the function x(&) which minimizes the integral

I- W(Wx 2 d& (24)

Generalizing this, a competitive enhancement of grid smoothness, orthogonality, and concentra-
tion can be accomplished by representing each of these features by integral measures over the
grid. and minimizing a weighted average of the three. This approach was put forward in Ref. 30
and is discussed In detail in Ref. 1.

The second approach is to note the correspondence between Eq. (23) and the one-dimen-
sional form of the following commonly-used elliptic grid generation system, Eq. (7). Here the

"control functions", Pn' serve to control the grid line spacing and orientation. The ID form

of this system is

x Px = 0 (25)

Differentiation of Eq. (23) yields

wx wx " 0 (26)

Then, from Eq. (25) and (26),

X w,
- -- S "(27)x w

from which the control function can be taken as

P a - (28)w
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It is logical then to represent the control functions in 3D as

P . --- n - 1,2,3 (29)

This approach was put forward in Ref. 3A and has been applied in 3D in Bet. 31.
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4. COff13IBUTIONS

1.1 Solicitation and Overview

The essence of this AGARDograph is a compilation of case histories depicting the current
state of the art in grid generation activities for complex configurations. Researchers who
have been actively building and using grid generation codes for simulating 3D configurations
were solicited to describe their experiences in this area. In addition to the usual method
description, each contributor was asked to describe what grid topologies they have used and
what steps they took to generate a grid for a particular application. The contributors were
also asked to provide some details of what were the most time consuming tasks, what difficul-
ties they encountered and how these were resolved, and what steps they might take in the fu-
ture to improve matters or what software Is needed to better generate grids.

None of the papers contributed to this AGARDograph used unstructured grids or rectangular
grids with unstructured boundary/interface elements. Nevertheless, they give a fairly accu-
rate picture of the capability for griding complex configurations as of about the first half
of 1987. The overall impression drawn from these contributions is that considerable capabil-
ity exists to adequately mesh relatively complex shapes given adequate time (measured In
weeks). This technology, or an alternative, must continue to improve, however, or it will
indeed impede the long term goal of complete aircraft simulation.

The papers contributed to this AGARDograph convey a wealth of information but here we
wish to note only two points. The first point, mentioned in the introduction, is that most of
the contributed papers have adopted the composite grid approach to griding complex configura-
tions, thereby allowing an extension of existing single-grid curvilinear grid algorithms.
Moreover, the most prevalent approach is the blocked (i.e., non-overlapped) grid method. Nine
of the eleven contributed papers deal with generating a grid for general purpose simulation of
flow about complex configurations (the papers contributed by Yoshihara and by Sobieczky having
more limited objectives). Of these, only the approaches described by Eberle and by Benek did
not explicitly adopt the blocked grid approach, although the Benek approach can include
blocked grid boundaries.

Among the advantages cited for the composite grid approach are the following:
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(1) ease of treatment of complex configurations.
(2) capability for local refinement and motification.
(3) reduced core storage.
(4) natural use of different flow equations In different regions.

A second point is that because of the emphasis on composite grids, the tasks of sub-
dividing the grids, generating surface grids, an,! providing Interfaces have become more time
consuming and critical than the task of generating the interior grids. The contributed papers
on composite grids either strongly hint at, or explicitly note, that how a grid should be
subdivided depends on the geometry, the numerical algorithm used, the flow features, etc. So,
given a limited computer resource, the sub-grids of a composite grid must be selected with
care. This implies a learning process and a need for human interaction. Like geometry defini-
tion, the tasks of subgriding, Interfacing, and surface grid definition are being assigned to
interactive workstations. Various levels of sophistication in treating these problems in this
way are evident in the contributed papers. What is strongly implied is that these are not
simple tasks or ones for which off-the-shelf software Is available. This is evidently a pac-
ing area of research in complex grid generation.

Surface grid generation Is seen to have a dominant effect on the quality of the volume
grid, to be very time-consuming, and to be in considerable need of improvement in regard to
the specification of boundary data sets and the interactive manipulation thereof. Thre is a
feeling that more emphasis should be put on the development of CAD geometry tools especially
suited to the needs of CFD.

The topolog~cal definition of the block structure is seen to require considerable experi-
ence and to be difficilt to teach. There is a need for automation of this process, oerhaps
through the use of artificial intelligence or other means.

The critical need for graphical interaction, especially in regard to surface g-id genera-
tion, block definition, and grid control is evident. The process of grid generation for com-
plex configurations still requires too large an a,:nunt of man-time.

It appears now that the theoretical developments necessary for effective grid generation
are largely In hand, but that a very large amount of effort is still needed in the effic'ent
implementation of the processes.
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4.2 LESSONS LEARNED IN THE MESH GENERATION FOR PN/S CALCULATIONS

H. Yoshihara
Boeing Military Airplane Company

Seattle, WA, USA

SUMMARY

Experiences encountered in the 20 mesh generation with the elliptic differential
equation method are described for the PN/S calculations over a generic fighter at a
supersonic Mach number and for a wing/fuselage at hypersonic Mach numbers. Importance
of the mesh quality is stressed, and the need of an improved cost-effective treatment
of the shocks is pointed out.

1. INTRODUCTION

Experience has amply demonstrated that accurate finite difference solutions can only
be achieved if the mesh is sufficiently refined and orthogonal. That is, the quality
of the mesh impacts both the stability and accuracy of the numeric.1 soutions with
the sensitivity depending on the difference equations and boundary conditions on hand
and on the solution algorithm. An efficient mesh will finally impact directly the
computer costs. In the following we shall recollect the experiences encountered in
the mesh generation for the parabolized Navier/Stokes (PN/S) calculations for the
supersonic flow over a generic fighter (Ref. 1) and for the hypersonic flow over a
generic wing/fuselage (Ref. 2). Features of the solution and solution procedure
relevent to the mesh generation will be described.

The PN/S equations are based on the Reynolds-averaged thin-layer N/S equations in
which the pressure is assumed to be constant across tne subsonic portion of the
boundary layer (the sublayer approximation). Closure is achieved using the
Baldwin/Lomax mixing-length turbulence model. When the inviscid portion of the flow
is supersonic, the solution can be obtained by a spatial marching in the free stream
direction. In the cases to be calculated the nose shock from the fuselage apex is
fitted, but shock waves occurring further downstream are captured. In comparison to
the the unsteady N/S procedure, with the PM/S procedure, the computer time is greatly
reduced; but, more importantly, the mesh generation is greatly simplified, requiring
only a two dimensional (2D) mesh generation. The latter then permitted the treatment
of the complex fighter configuration. There is however a disadvantage introduced by
the sublayer approximation. There arises a numerical stability limitation requiring
the streamwise marching step to be "much larger" than the height of the subsonic
sublayer.

For the 20 mesh generation, the Steger/Sorenson elliptic differential equation method
was used. It entails the solution of two decoupled boundary value problems for the
dependent variables r - r(n,t) and a- e(1,r). Here r and e are the polar coordinates
in a marching plane in the physical space, whereas n and C are the cartesian
coordinates in the computational plane in which the physical space in a marching plane
is mapped to the interior of a unit square. (See Figure 1.) The two elliptic
equations for r(q,t) and (1), t) contain non-homogeneous terms which are chosen to
impose orthogonality of the mesh in the neighborhood of the boundaries. Boundary
conditions on the unit square are posed to obtain the desired mesh topology and
spacing. The above boundary value problems were solved by a point-relaxation code
furnished by Dr. Denny Chaussee of NASA-Ames.

2. THE SUPERSONIC CASE-MODEL 350 GENERIC FIGHTER (REF. 1)

Calculations were carried out on the configuration shown in Figure 2 for a free stream
Mach number of 2.2, at 10 degrees angle of attack, and assuming a turbulent flow. The
marching coordinate x was taken as the body-oriented axis passing through the fuselage
nose. In general 91 mesh points were used on the half-circumference and 45 points In
the radial direction. For the radial spacing, the location of the first point off the
solid surfaces was chosen; and the spacing of further outboard points was
geometrically stretched with a geometric ratio that located the outermost mesh point
on the outboard boundary formed by the nose shock. The location of the first point
and the total number of "radial" points were selected such that there was a minimum of
five points within the subsonic portion of the boundary layer. With the height u, Ae
subsonic sublayer varying over a wide range along the configuration cut, the location
of the first point off the surface should be correspondingly varied to achieve an
efficient mesh. However in the above calculations, the location of the first point
was fixed at the level to accommodate the smallest subsonic sublayer height, resulting
in excessive refinement elsewhere.

Selection of the Boundary conditions

The selection of the boundary conditions for the mesh generation problem is an
important first step which establishes the topology and spacing of the mesh and
indirectly affects the orthogonality of the mesh in the domain interior. In general
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the procedure to establish the boundary conditions is to locate the boundary mesh
points in the physical space to achieve the desired spacing. The resulting values of
r and B are then assigned as the boundary values at the corresponding points in the
computational plane. (In the latter the mesh points are distributed uniformly along
each coordinate line.) Along the configuration cut (ABCD), the mesh points were
distributed to fit the expected flow gradients. Thus for example the points would be
clustered about the sharp leading edge (Point C). Along the symmetry boundaries, AG
and DE, the mesh points were distributed with the geometric stretching described
earlier. Less obvious was the appropriate mesh placement along the shock EFG. Here
the mesh points were distributed with the same relative spacing used along the
configuration cut ABCD. Some tuning of the above boundary conditions was usually
required to obtain the final mesh.

The boundary conditions, as determined above, must be updated Ps the marching
progresses downstream, since the configuration cut can change greatly, in general
necessitating both an addition as well as a redistribution of the mesh points.
Without adequate control, a clustered mesh about the wing tip drifted from its
intended location about the tip to the wing surface, resulting in a severe skewing of
the mesh by the misalignment of the end points of the radial mesh lines.

The elliptic boundary value problems with the above boundary conditions were solved by
point relaxation, and a typical mesh at a wing station is shown in Figure 3. Here the
convergence of the relaxation process must be carried out to a point that the desired
mesh orthogonality near the configuration surface has been achieved.

Treatment of the Swept Canard Trailing Edge

The marching plane used was a plane of constant x. The use of this marching plane
offered no difficulties until the swept trailing edge was intercepted as at Station X
of Figure 4. Here the configuration cut assumed the multiply connected domain shown
on the lower left part of Figure 4. The mesh for this configuration can be generated
in the usual way if the wake segment BD and GF are placed on the two sides of a slit.
The corresponding computational plane assumes the configuration shown on the right
part of Figure 4. The difficulty for the numerical formulation is that the flow
continuity condition across the slit envolves two points lying on separate line
segments. With an implicit treatment of the continuity condition, the simple solution
procedure used previously is no longer possible.

The above difficulty can be circumvented in several ways. In the case of a modest
trailing edge sweep, a shearing transformation can be made to unsweep the trailing
edge. The usual marching procedure can then be used across the trailing edge. The
procedure used in Ref. 1 however was to bridge the trailing edge by solving the
intervening domain containing the trailing edge by the unsteady N/S code ARC30. Here
the solution at the slit points was determined using a one-sided difference, and the
resulting unequal values at the corresponding slit points were simply averaged for use
as initial data for the next time step. Upon convergence, the continuity of the
solution at the slit would be achieved. The supersonic outflow condition was
prescribed at the downstream boundary. The 3D mesh for the ARC3D solution was
generated by interpolating a sequence of 2D meshes, one of which shown in Figure 5.
The ARC3D solutions on the two most downstream planes were discarded, and the solution
on the next two further upstream planes were used as initial data for the further PN/S
marching.

Treatment of the Underwing Nacelles

The inlet faces of the 350 configuration lie on a constant-x plane, so that no
difficulties were encountered in the march onto the nacelle. The marching was first
carried out downstream to the inlet face, yielding the solution on the mesh shown in
the upper part of Figure 6 containing the nacelle centerbody. A new mesh was then
generated at this station with the configuration cut now containing the nacelle
highlight (lower part of Figure 6). The solution on the upstream mesh (upper mesh)
was then interpolated onto the downstream mesh (lower mesh) to yield the initial data
for the further downstream marching.

Mesh Refinement About the Wing Tip

For the supersonic cases with the leading edge only slightly subsonic, the leading
edge pressures, both on the upper and lower surfaces, should be reasonably well
behaved without sharp suction or overpressure peaks. In Figure 7 the spanwise
pressure distribution at Station D is shown where a sharp peak occurred on the lower
surface near the leading edge. This is to be contrasted to the expected smooth
distribution obtained at Station 8 also shown in Figure 7. The cause of the suspect
peak at Station 0 is due to the truncation errors associated with both the flow
solution and the numerical determination of the near-singular Jacobian in the
neighborhood of the "pointed" leading edge. The sharp spike can only be removed by
using a sufficiently refined orthogonal mesh about the leading edge. (Here a
conservative* differencing of the Jacobian offered no relief.)
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3. THE HYPERSONIC CASE-GENERIC WING/FUSELAGE (REF. 2)

PN/S calculations were also carried out for the generic wing/fuselage shown In Figure
8 at Mach numbers of 10 and 25 and at zero angle of attack assuming the boundary layer
to be turbulent. Fluid dynamically these hypersonic flows are more extreme relative
to the previous supersonic cases due to the appearance of greatly strengthened shock
waves and increased heating effects. In general the mesh generation procedure
followed that used in the above supersonic case, but the requirements on the mesh
quality were more stringent due to the increased "severity" of the flow. A typical
mesh of dimension 101 (half-circumference) x 60 (radial) generated with the above
elliptic method is shown in Figure 9. The first mesh point from the surface over most
of the configuration was located at 0.02 inches, but closer locations were used in the
nose and wing leading edge regions. The axial marching step was 0.5 inches. (These
dimensions are to be viewed relative to the fuselage length of 1235 inches.) In the
following, additional facets of the mesh generation process arising by the increase of
the Mach number are described.

The Temperature Boundary Layer

In Figure 10 raoal profiles of the velocity and temperature at the crest point at
Station 533 are shown for a turbulent flow at N = 10. Here a surface temperature of
18000 R was prescribed. Of particular significance is the highly-peaked temperature
overshoot arising in the lower part of the boundary layer generated by the intense
eddy dissipation. It is clear by examining these profiles that the adequacy of the
mesh refinement in the boundary layer is dictated, not by the more customary velocity
profile, but by the temperature profile.

Shock Capture

In the present calculations the nose shock from the fuselage apex was fitted, but
shocks arising further downstream, as the wing bow shock, were Ldptured. In the shock
capture process an appropriately refined mesh must be used to obtain an acceptable
shock thickness. In the case of an inclined shock cutting across the mesh, a fine
mesh must be used in all coordinate directions cutting across the shock. Thus if the

shock is aligned with the "transverse" mesh lines, a fine mesh would be required only
in the direction cutting across the shock.

The leading edge radius of the wing was 0.5 inches (this to be contrasted to the wing
root chord of the order of 500 inches). With a streamwise marching step of 0.5
inches, the question then arises as to how the detached shock flow about the leading
edge with a radius equal to the marching step could be adequately resolved. The
answer is that the detached shock flow is essentially "aligned" with the leading edge,
and the marching in the computational plane takes place essentially in the direction
of the leading edge. That is, the coordinate lines are aligned with the strong
portion of the detached shock. The resolution of the detached shock flow is then
dictated, not by the 0.5 inch marching step, but by the mo e highly refined transverse
mesh in the marching plane. Away from the leading edge region, this alignment no
longer prevails and with the transverse mesh itself coarsened, the shock will assume a
much larger thickness.

For the proper design of external compression inlets, which might be incorporated on
the wing lower surface of the above configuration, it is essential that the shocks
from the compression ramps be captured with a sufficiently small thickness. Also to
obtain the proper interaction of the wing shock on the thick fuselage boundary layer,
it is again important to capture the wing shock with a sufficiently small thickness.
In a 3D problem, one would turn to a 30 adaptive mesh program to align the mesh with
the shocks as well as bunch the mesh lines in the direction normal to the shock. The
present PN/S procedure is a 2D method, solving the flow only in a cross-flow marching
plane. Use of an adaptive mesh program in this marching plane clearly would not
achieve our goal completely. The x-marching would still cut across such aligned
shocks, necessitating a refined marching step.

Shock-on-Shock Interaction

As one marches sufficiently far downstream, the nose shock from the fuselage apex will
approach the wing leading edge and intersect the wing detached shock. A difficulty
now arises as the 60 radial mesh points are squeezed into an ever-decreasing interval
as the shock (the outer boundary) approaches the wing leading edge (the inner
boundary). Moreover, computational difficulty can be anticipated as the fitted nose
shock approaches and intersects the captured wing shock, ane the treatment of the wing
shock is switched from a capture to a fitting procedure as it emerges as the most
upstream shock. To circumvent these difficulties, the treatment of the nose shock was
,!itched from a fitting to a capturing procedure just upstream of Its intersection
with the wing shock. In this switch, the outer boundary was selected parallel to the
expected shock location and located sufficiently outboard to cover the upstream spread
of the captured shocks. All 60 mesh points were employed in the greatly reduced
radital interval.



4. CONCLUDING REMARKS

In supersonic and hypersonic problems, the use of the PN/S method greatly simplified
the mesh generation problem, reducing it from 3D to 20. However, the severe stiffness
of the problem together with the extremeness of the flow, particularly the hypersonic
case, placed stringent quality requirements on the mesh. The treatment of shock waves
is still a serious problem. Use of an adaptive mesh in the PN/S cross-flow plane will
still require a mesh refinement in one transverse direction and in the marching
direction. Shock fitting of the interior shocks does not offer an attractive
alternative.
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4.3 THRS-DIMENSIONAL ELLIPTIC GRID GENERATION FOR AN F-16
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SUMMARY

A case history depicting the effort to generate a computational grid for the
simulation of transonic flow about an F-16 aircraft at realistic flight conditions is
presented. The flow-solver for which this grid is designed is a zonal one, using the
Reynolds-averaged Navier-Stokes equations near the surface of the aircraft, and the
Ruler equations in regions removed from the aircraft. A body-conforaing global grid,
suitable for the Ruler equations, is first generated using three-dimensional Poisson
equations having inhomogeneous terms modeled after the two-dimensional GRAPH code.
Regions of the global grid are then designated for zonal refinement as appropriate to
accurately model the flow physics. Grid spacing suitable for solution of the Xavier-
Stokes equations is generated in the refinement zones by simple subdivision of the given
coarse grid intervals. That grid generation project is described, with particular
emphasis on the global coarse grid.

INTRODUCTION

The V-16 is widely employed in the US and NATO air forces, and that is the first
of several reasons for the choice of that aircraft in this simulation. Secondly, many

of its design features, such cs leading-edge extensions or strakes. appear on fighter
aircraft currently under development. Additionally, a great body of wind-tunnel data
for that aircraft already exists. Lastly, Reznick reports that there is work under way
at present to expand the F-16's flight envelope to allow higher angles of attack. The
propulsion system is capable of sustaining such attitudes, but certain undesirable
flight characteristics prevent it. It is thought that computer simulation could aid
that effort.

Zonal approaches have the advantage that geometrically complex flow fields such as
this one can be simulated by zones which, by themselves, are geometrically simple.

2

Another advantage is that different flow-modeling equation sets can be used in different
zones, as are appropriate to local flow conditions. This feature makes it possible to
obtain solutions within a reasonable amount of computer time. The alternative, solving
the Navier-Stokes equations everywhere in the field, would be computationally prohib-
itive. Further, in a zonal approach only the largest single zone need fit into the
computer's high-speed memory at any one time. Here
again, the alternative of putting the entire problem
into the computer all at once would be prohibitive
even for most modern computers. Also, the grid can
be modified locally, for example decreasing the
spacing according to the needs of the flow solver,
without perturbing other parts of the grid.

GRID TOPOLOGY C OSS-SEC N'

A cylindrical grid topology about the fuselage
is used because of its ability to treat a body with a
sharp nose, as illustrated in Fig. 1. This topology
also will facilitate the later addition of a grid
zone for the exhaust plume. This fuselage grid is of
the S-type as seen from the side or from the top. It
appears to be of the O-type when viewed from the
front or rear, thus giving rise to the terminology
9-0-type as describing this cylindrical grid.

Further examination of Fig. I shows the grid
above and below the wing, seen from the front, to be
of the S-type, with the wing in a slit. The main
advantages to the use of H-type topology in this
coordinate surface are the ease with which it mates
with the cylindrical fuselage grid, and its ability
to provide an adequate number of points in the far
field outboard of the tip.

A cross-sectional view taken normal to the span Figure 1. Front-Quarter view
direction, shown in Fig. 2a, reveals an airfoil of F-16, showing fuselage,
section with the surrounding grid being of the symmetry-plane, end wing.
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B- -type. This grid type could
potentially waste many points upstream
and downstream of the wing when the
wing is emhedded in a refinement zone,

---- - but the solution to this problem, shown
in Fig. 2b, is to terminate thst zone
just upstream snd downstream of the
wing. Another dissdvantsge of this

__approach is that certain types of
flow-solvers using H-type meshes have
difficulties resolving a blunt leading-
edge. But the leading-edge of the F-1S
wing is very sharp, so this problem is
minimized. The overriding advantage of

____________________this type of grid is the ease with
which it can be meted to the fuselage
grid. If the grid were of the 0- or

a) Coarse global grid only. C-type in this direction, greet
difficulties would be encountered in

S meting to the fuselage, and in
ahieving a~dequate resolutionwupstrea

o f the wig Sinc the wing grid
- appears to be of the U-type when viewed

in both span-normal and flow-normal
directions, its topology is referred to

\ \ \ \as H-H-type.

When designing a mesh for aS complex configuration such as this, it
:77=77_ --7 is difficult to quantify the effect of~J /the chosen topolology on the serious

L±Ji~iL.matter of putting an adequate number of
points where they are desired,

-principally near the fuselage- and
wing-surfaces, while restricting the

- .total number of points. Holat and
- ---- Thomas

3 
have attempted to clarify this

~2~7-~--.---.-. ~matter with their Mesh Efficiency Ratio
(HER). Rezaick in Ref. I calculates
that the NIH has fvery favorable values9

b) Refinement zones added, for the type ofgrid topology use
here, H-a on the fuselage :ndtH-l for

Figure 2. Grid surface normal to span, the wing. The eficiency f the mesh
is important, since this flow solver

challene the speed and storage
capabilities of even the most powerful modern computers.

This flow simulation was first performed for a simplified version of the aircraft,
consisting of the fuselage, strake, and main wing only, with the inlet fared over.
Later addition of the inlet provided a perplexing topological challenge, as illustrated
in Fig. 3a. The solutions chosen for this work was to introduce two warped wedge-shaped
zones, shown in Fig. 3b. One wedge has its edge emanating from the lower side and
bottom of the fuselage, upstream of the inlet, and its base at the face of the inlet.
The other warped wedge-shaped zone nestles in the diverter region, between the top of
the inlet and the bottom of the fuselage. The global grid wraps around the fuselage
having these two zonal grids already attached.

GLOBAL GRID GENERATION

The present approach to the generation of the coarse global grid follows the two-
dimensional grid generation program* for airfoils of Sorenson and Steger.6

5
' This

elliptic approach, with inhomogeneous terms that automatically control grid cell height
and skewness at boundaries, was later extended to three dimensions for simple shapes,

8

and recently for realistic fighter aircraft.
9
.

10 
This elliptic grid generation method

has been seen, in both two- and three-dimensions, to be forgiving of surface slope
discontinuities. Many surface slope discontinuities appear on this aircraft, e.g., at
the edge of the strake, and the edges of the shelf aft of the main wing. Hence this
grid generation method id appropriate for this problem. Another consideration is that
the refinement grids, as seen in Fig. 2b, have some coordinate lines that are coincident
with the course global grid. So for the refinement zone grids near the surface to be of
reasonable size and not skewed, it necessary for the global grid to be well-controlled
near the surface. The present grid generation method's ability to control cell height
and skewness at boundary surfaces is therefore appropriate for this problem.

The program for generating grids about simple analytic shapes, reported in Ref. 8,
was the starting point for this effort. The first step was to convert the program from

*Called GRAPE, an acronym for GRids about Airfoils using Poisson's Equation
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spherical topology to cylindrical
topology. The previous program with
spherical topology used spatial
variables rho,theta,phi. The new
program i in cylindrical topology,
but it uses cartesian spatial
variables x,y.z. The cylindrical
nature of the topology is imposed by
the boundary conditions in physical
space on the grid generation
equations. The aircraft is assumed,
for purposes of this study, to operate a) Right half of forebody.
at zero yaw angle, hence the flow
field can be assumed to be bi-
laterally symmetric about the vertical
center plane. The flow-solver
requires a one point reflection
boundary at the symmetry plane, so
that feature is included, both above
and below the streammime axis.

The next matter to be sddressed
was the treatment of the axis upstream
of the nose of the aircraft. In the
region of the fuselage, one face of
the computational cube warps to
conform to that fuselage. But b) Inlet and diverter zones added.
upstream of the nose of the aircraft,
that face collapses to the axis line. Figure 3. F-16 with inlet.
The Poisson equations can be solved,
and thus a grid generated, in that
case. However, the GRAPH grid generation program and its three- dimensional versions
also solve side-condition equations to find the inhomogeneous terms which give the
required control of cell size and skewness at boundary faces. Those side-condition
equations become undefined when the face collapses to a point or a line.

Three possible solutions to this dilemma were considered. One would have been to
Just "turn off" the inhoaogeneous terms there, i.e., set then to zero, leaving what
would locally be the Laplace equations about the axis. It was expected, however, that
such a grid would have been unacceptable. It was intended that the clustering effects
on the body would strongly attract points to the body; to discontinuously release that
attraction would have produced an unacceptable grid near the nose of the aircraft. The
second possible approach would have been to fix the values of the inhosogeneous terms
along the axis as being equal to (or some simple function of) the terms on the fuselage.
This was rejected due to the perceived need to have terms at those places which really
did constrain the grid as required there. The third solution, the one adopted, was
suggested in private communication by by J. L. Steger and is illustrated in detail in
Ref. 9. The axis, a line having a zero radius, was temporarily expanded to have a
small positive radius using a simple analytic transformation. Thus the face which had
collapsed to a line was re-expanded to resemble a narrow cylinder, or a "soda-straw."
The grid was generated about this configuration, then shrunk back down to an axis by the
inverse of that simple transformation in the radial direction. This artifice allowed
the computation of inhomogeneous terms everywhere on that face of the computational
cube.

The next challenge in this grid generation effort was to put the wing into its
slit. Upstream of the leading-edge, outboard of the tip, and downstream of the
trailing-edge, there is a planfora grid surface, i.e., a grid surface in which the wing
resides. But the wing, embedded in this planform surface, has two surfaces: upper and
lower. So a fundamental data storage problem arises: how can one index refer to one
grid surface off of the wing, and two surfaces on the wing? The solution used here is
to make the plenforn surface to be "double-stored." There are two grid surfaces,
denoted by two different indicies, which are coincident everywhere off of the wing. On
the wing one of the two grid surfaces conforms to the upper surface of the wing, and one
to the lower. To generate such a grid and use it in a flow-solver is tedious, but
probably less so than other approaches. The principal coding caveat is to insert an "if
test" when differencing across that double-stored surface, and appropriately increment
the indicies.

The boundary condition arrangement in the grid generation to preserve the wing in
its alit was made as simple as possible. Straightforward explicit boundary conditions
were imposed on the upper and lower surfaces of the wing. It was felt that the ease of
coding in this matter far outweighed any advantages which might have accrued from more
sophisticated implicit boundary treatments.

However, in addition to instituting Dirichlet boundary conditions at the wing, it
was necessary to add inhomogeneous terms to impose on the wing surfaces the same kind of
control of cell height and skewness as is imposed on the fuselage. See Ref. 10 for a
detailed treatment of those inhomogeneous terms, as well as the Poisson grid generation
equations to which they are applied. Those terms are similar in form to the body's
terms, but required some coding effort, since the wing surfaces are examples of a
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different family of grid surfaces vim-a-vim the fuselage surface. The fuselage, in this
effort, is a surface of constant computational variable zeta. The wing surfaces are
surfaces of constant xi. Inhomogeneous terms were also added to cluster lines in the
planform grid surface toward the leading-edge end trailing-edge of the wing. Those
terms are degenerate two-dimensional versions of the terms on the body and wing surface,
and are identical in form to the two-dimensional clustering terms in the GRAPE program.

The attempt was also made to add similar terms to cluster lines outboard of the
tip, to make lines in that region to be near-orthogonal as viewed from above. That
effort was not successful, however. It is a fundamental trait of elliptic grid

generation methods, including this one,
that grid lines tend toward a uniform
distribution. Thus, if points on a
boundary are tightly clustered in the
direction tangent to that boundary, and
lines emanate from those tightly
clustered points, those lines will tend

'-IN to repel each other. That mutual
repelling action can he so intense that
the lines deviate greatly from being
orthogonal to the boundary, regardless
of the presence or absence of clustering

I 'terms. This problem was encountered
FUSELAGE' . when attempting to add inhomogeneou

terms at the wing tip for the purpose of
controlling spanwise lines proceeding
outboard from the tip; see Fig. 4. A
grid solution could not be obtained; the
grid equation convergence history became

f / , oscillatory. The resolution of this
problem was to extend the wing outboard
with zero thickness all the way to the

birouter boundary. Thus spanwise lines in
that region were defined as part of the
initial conditions to the grid
generation, and they remained in place
for all computational time.

The next step in the process of
Figure 4. Sketch suggesting the tendency applying the present grid generation
of grid lines emanating from closely-spaced technology to the F-16 flow simulation
boundary points to mutually repel, causing problem was to fit the surface of that
instability. aircraft, and to obtain a good

distribution of body points. This
proved to be a formidable task. The

body definition was obtained in the form of tabulated points describing the surface.
However, the definition of the airplane's shape so obtained was in several pieces, with
different coordinate systems for each piece. Some of the pieces did not exactly fit
together. Further complicating this situation was our intention to start with an F-16
simplified by a fared-over inlet and the deletion of the empenage, missile rails, and
ventral fins. These modifications, having the purpose of simplifying the initial task
of the flow-solver, made the body-fitting significantly more difficult. The body-
fitting effort was performed by Edwards" on a Calms CAD/CAM system. While this device
and its software aided in the smoothing and faring operations, certain deficiencies were
found which made interpolating in some coordinate directions practically impossible.
Thus those point distribution functions devolved to be part of the grid generator.
These body-definition and distribution problems reached a zenith later, when attempting
to restore the inlet. For various reasons having to do with the availability of
personnel and machines, almost three man months were spent creating the wedge zones, a
task which should have bordered on the trivial.

Distribution of body points is an area of concern, even under ideal circumstances.
An elliptic grid generator is sensitive to not only the shape of the body, but the
distribution of points on it. Consider a trace proceeding around the fuselage in a
plane cutting it normal to the streaswise axis, with that trace proceeding across the
edge of the strake. The body points on that trace must be clustered approaching the
strake edge from both directions, with minimum tangential spacing immediately above and
below the edge. (A two-dimensional analogy to this is that points must be clustered to
the nose of a sharp-nosed airfoil when generating an 0-type grid about it.) If these
precautions are not taken, the elliptic grid generator will at beat give a grid with odd
angles at the edge, and at worst fail to converge.

Distribution of body points is likewise critical for the flow-solver as well. In
the early months of this effort, computer storage limited the number of grid points in
the chordwise direction on the wing, which in turn limited how fine the spacing could be
in that direction at the leading-edge. Thus the first effort failed to resolve the
shape of the leading-edge, leading to a failure to correlate with test date at high
angles of attack. This problem vas resolved in later efforts with NASA/Ames' new CRAY-2
computer, having 256 million words of high-speed memory.

The resulting coarse global grid, illustrated in Fig. 5, has 26 points around one
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half of the fuselage, from bottom to top, including the symmetry plane and the
reflection boundary surfaces. The grid has 55 points in the treamwise direction,
including 5 upstream of the none and 5 downstream of the jet-exhaust. Twenty points are
used in the radial direction, giving 28.600 total
points in the coarse grid. Fifteen points are used
in the chordwise direction on the wing, with 10
spanwise stations. The minimum spacing normal to
the fuselage surface, between the surface and the
next point outward, was controlled by the GRAPE-type
terms to be approximately 4 inches on the real
aircraft. Approximately the same spacing was
required on the upper and lower surfaces of the
wing.

The differential equation solver used in the
grid generation was point-SOR. While this method is
admittedly one of the slower ones in use today, it
was chosen for its simplicity and ease of coding.
The placing of the wing in its slit, for example
would have been a much more complicated task with
more sophisticated equation solver method, such a
ADI. With no effort at vectorization, this FORTRAN
code produced cc.se grids in aprox. 100 iterations
at aprox. one second per iteration on a CRAY XMP
4/8 computer.

GENERATION OF REFINEMENT GRID ZONES

Refinement zones were specified to provide
viscous clustering in the direction normal to the
surface wherever it was expected that viscous
effects would be significant. Grid points added in Figure 5. Cutaway view of
the surface-normal direction in refinement zones coarse grid.
were located by a bisection iteration scheme applied
to arclengths between consecutive points, for the
purpose of enforcing a constant ratio between the lengths of successive grid intervals.
Grid points were added in surface-tangent directions by dividing existing coarse grid
intervals into simple fractions of their previous length, e.g., by halving, quartering,
etc. Refinement zones are seen in Fig. 2b, a view of a 8panwise-normal grid surface
showing refinement zones surrounding the wing, and in Fig. 6, a streamwiae-normal grid
surface near the wing. Details of the generation of the refinement zones are described
and illustrated on pages 22-31 of Ref. I. A total of 18 zones were used in this case
with the fared-over inlet, having in then a total of 304,134 points. Flow-field
solutions were obtained using this grid,
and are described in Ref. 4. The grid
for the case with inlet, including 19
zones, contains a total of 384,094
points. Flow-field solutions are
described in Ref. 5. Y

CONCLUSIONS AND FUTURE PLANS

The first and most obvious
conclusion to be drawn here is that the
above method works. Grids were
generated, and flow-solutions to this
very difficult problem were obtained,
and they did agree with test data. See
Refs. 4 and 5.

But the call for this paper
requested "...s description of what you/

did and what worked .... some details of A7
what were the most time consuming tasks
and what difficulties you had to
overcome .... s brief written tutorial on
how you generated the grid for your
application.* In accordance with that
request the following observations are Figure 6. Streoawise-normal grid surface
made. near wing, showing refinement zones.

The most problematical part of this
grid generation project was obtaining an adequate fitting of the body surface, and
distributing points on it, i.e., obtaining sn adequate surface grid. There were several
contributing factors to this matter, including inadequacies and unreliabilities in the
CAD/CAM software, and difficulties in obtaining time on the unique hardware on which it
must run. Also contributing here was the marginal suitability of the "raw" body
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definition which was input to the CAD/CAN, although this problem may be traced to
incompatibilities between the different CAD/CAN systems here and at the airframe
manufacturer. An effort in underway as of this writing to adapt the PATRAN software to
this task, but results have not yet been obtained.

But a sore fundamental problem here may be the way surface-fitting is viewed,
relative to other parts of the field of Computational fluid Dynamics (CFD). Body-
fitting is not been in some quarters as a "glamorous" career direction. Those
performing these tasks sometimes move on to other regions of the field, leaving s lack
of continuity, a lack of the easy expertise which comes with experience. A solution may
be to recognize body-fitting for what it is: a major pacing item in modern application-
ally-oriented CFD, and to accord it the respect which it deserves. Another approach
might be to have an easy-to-use "turnkey" CAD system, one which is oriented to CF
applications, and could be easily used as a tool by any CFD researcher to obtain
superior body fitting.

Some significant grid generation technology has been developed in this work,
specifically an extension of GRAPE to three-dimensions and the application of it to
zonal approaches. This author has had several requests for this grid generator from
other CFD researchers, and so an effort is underway to package it for export. This
requires complete re-coding, in FORTRAN, to produce a program which is nest, modular,
robust, well-documented, and easily applicable to a wide variety of cases. The program
will allow the flow-field to be broken-up into a large number of zones, and it will be
capable of solving the grid-generation equations in all zones simultaneously, with
information passing between zones. It will be possible to impose near-orthogonality and
control of surface-normal spacing at all six faces of each zone. Single-dimension
addressing will be used, facilitating the generation of zones having a great latitude in
their sizes (e.g., it will be possible to generate one zone with dimensions 10 x 10 x
100, a second zone being 10 x 100 x 10, and a third zone that is 100 x 10 x 10, all with
the same program which does not have dimensions 100 x 100 x 100). The program will not,
however, have any capabilities for fitting body surfaces or distributing points on then;
it has been (.and continues to be) the philosophy of the GRAPE grid generator that
surface-fitting is a formidable problem in itself, and that the surface-grid is a
boundary condition which should be an input to the grid generator.
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4.4 COMPONENT ADAPTIVE GRID GENERATION

FOR AIRCRAFT CONFIGURATIONS

by

N.P. WEATHERILL

J.A. SHAW

Aircraft Research Association Ltd., Manton Lane, Bedfurd, England

INTRODUCTION

As numerical algorithms for the solution of the Full Potential and Euler
equations mature there is an increasing demand to simulate the flow over complex
aerodynamic shapes. However, of the many problems in engineering and the
physical sciences which involve grid generation, the shapes and length scales
encountered in aerodynamics are some of the most varied. The generation of
a suitable set of points around an aircraft shape, therefore, affords a
significant technical challenge and one which is currently being pursued by
many groups.

The concept of the grid generation technique adopted at the Aircraft
Research Association was originally proposed by Forsey as discussed in Ref.l.
The development of a general grid generation method applicable to a wide range
of aircraft configurations, involves a block decomposition of the flow domain
with grid points within each block computed by solution of a set of elliptic
partial differential equations. This method enables grid structures to be
constructed which are compatible with each separate component in a configuration
while maintaining a globally smooth grid. This component adaptive grid
generation technique has been applied to a variety of configurations and details

2.3.a.5
of the method have been giver elsewhere 

"  
. It suffices, theretore, to give

only a brief outline of our approach.

The method utilises the basic concept of block structured grids. The flow
domain is subdivided into a set of non-overlapping blocks. The arrangement
of the blocks defines the grid structure or grid topology which is appropriate
for the geometrical configuration. The block subdivision is performed
automatically by a block decomposition algorithm. Each block is chosen to be
topologically equivalent to a cubold in that it has six faces and eight corners
and can, therefore, in principle, be mapped into a unit cube in computational
space without change in topological structure. Cartesian grids in the unit cubes
in computational space map to curvilinear grids in physical space. Many faces
within the block structure are boundaries between blocks in the interior of the
flow domain and as such are purely notional boundaries which have no physical
significance. At such boundaries a continuity condition can be imposed which
ensures grid lines pass smoothly through the interface of two adjacent blocks.

Following the ideas of Thompson, Thames and Mastin
6
, a set of elliptic partial

differential equations have been used to generate grid point coordinates
within each block. These equations can be written

giJxci{J = -piX'i (1)

where gij are the metric terms, X the grid point coordinates and i the
computational coordinates with the tensor notation ij taking values of 1,2
and 3. The source terms pi are used to control the positioning of grid 7
points and their form is computed using the ideas of Thomas and Middlecoff
The continuity condition at block faces is applied by defining a computational
molecule for points on the faces which is compatible with the finite difference
solution of the elliptic equations (I).

Following the ideas of Coons
8 

the surface of each component of a
configuration is modelled by a network of parametric bi-cubic patches. Any
patch can be described by the matrix equations

AMB
-l 

= X

where X = (x,yz), A = (s3,s2,s,l), B = (t 3,t 2,t,l) and M is a matrix
containing the parametric derivatives of X and some blending functions.
Grids on the surface of a geometry are computed in the parametric space (s,t)
using the equivalent two-dimensional form of equation (1).

Here we propose to discuss the application of these techniques to
wing-body-canard geometries. These configurations are sufficiently complicated
to highlight the difficulties inherent to grid generation and provide good
test cases on which a more detailed discussion of our approach can be based.
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TEST CASE

The test case geometries are shown in Figures 1 and 2. The two afford
interesting geometrical contrasts and represent two typical configurations
which might be confronted in the Aerospace industry. Geometry A, shown in
Figure 1, has a swept forward wing with the canard position at the body side
approximately a canard chord forward of the wing. The canard elevation is
higher than that of the wing.
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Geometry B is shown in Figure 2 where it should be noted that the body has
been extended far downstream to avoid problems with afterbody effects. At
the bodyside, the x-value of the trailing edge of the canard is approximately
equal to the x-value of the leading edge of the wing. Due to the sweepback
of the leading edge of the wing, with respect to the trailing edge of the
canard, the x-value of the trailing edge of the canard tip is several canard
tip chords upstream of the leading edge of the wing. This spanwise variation
of the relative positions of the wing and canard leads to a conflict in the
appropriate chordwise topology for the body side grid and the canard tip grid.
The elevation of the canard is above that of the wing.

F1ORE 2. GEMETRY S. Ulrjme-ODy-cnnnB CIlEURrIOM.

TOPOLOGY DEFINITION

In principle, the multiblock method described above allows a wide range of
grid structures to be defined for a given configuration. However, the problems
associated with grid control are strongly influenced by the choice of grid
structure for a geometry. A wise choice of grid topology, which utilises the
properties of the elliptic equations (1) used to generate the grid, can ease te
requirements on the grid control technique. However, an inappropriate grid
structure can lead to unacceptable demands on any coordinate system control method.
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In addition to grid control requirements, the specification of any suitable

topology can be problematic. The mechanics of defining a grid structure within

the multiblock framework involves specifying, for each block, the number of grid
points in each computational coordinate direction, and for each face the
appropriate boundary condition type for the elliptic grid generation equations.

For the continuity boundary condition it is necessary to specify the
adjacent block, the appropriate adjacent face of that block and the
orientation between the coordinate axes fixed in each block. The
specification of this information although straightforward for a simple
grid structure is time consuming and tedious. If one aspect of a
configuration is changed, for example, the canard moved a small distance
relative to the wing, then this may involve a significant modification to
the topology.

It is clear from these brief comments that the definition of a suitable
topology for a given configuration requires expert knowledge. A grid
generation technique, which is to be used by non-CFD specialists, must
overcome the problem of topology construction. To this end, an automatic
topology generator has been developed which, given a configuration, subdivides
the flow domain into a set of blocks, the arrangement of which is consistent
with a component adaptive grid structure.

The ideas behind the automatic block decomposition algorithm are best
illustrated in two dimensions. Consider an aerofoil in a finite two
dimensional domain. In computational space (&,n) the aerofoil coordinates
map to a cut of constant n. In a block structured domain this cut maps to
a side of a rectangular block. Assuming a unique boundary condition type for
each side, a block decomposition of the domain would result in six regions,
as shown in Figure 3a. Now introduce three additional cuts in the comnutational
domain; two cuts of constant n, one above and one below the aerofoil and a
third cut of constant t - upstream of the aerofoil. The resulting block
decomposition is shown in Figure 3b, It is now possible to make a small change
in the block structure to construct a grid topology in which a C-grid is locally
embedded around the aerofoil within a global H-grid. Such a transformation
is shown i Figure 3c.

_A a

b c

d b

FIGURW 3. PLOCK ECmrosrTIO FOR my nROPOIL.

Clearly the transformation performed around point A in Figure 3c could

be applied around B to give a polar structure around the aerofoil. Other
transformations are possible which give rise to other block structures and
different singularities in the grid. One such example is shown in Figures 3d,
e and f wherein the block decomposition gives rise to a six point singularity
ahead of the aerofoil section. Experience in generating grids with singular
points indicates that although the position of singularities is not easy to
control, two five point singularities away from the aerofoil are preferred
to a six point singularity positioned just ahead of the leading edge. The type
of transformation shown between Figure 3a and 3c has been 'dopted in the
automatic topology generator.

The arguments presented here in two dimensions are applicable to three-
dimensional shapes like a wing, pylon, tail, body etc. In such cases the
local block structure around each component is pseudo three-dimensional in the
sense that the locally adapted grid structures shown in Figure 3c are repeated
along the component. At the termination of the component the same grid
structure continues but is constructed around a degenerate form of the
component. For example, a locally embedded C grid around a w.,, - rntinued
outboard of the tip where it is constructed around an imaginary extension of
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the wing which has zero thickness. For a locally embedded polar grid around
a body this degenerates into a polar grid encircling a singular line upstream
of the body nose.

AUTOMATIC TOPOLOGY GENERATOR

Details of the configuration are input to the topology generator by
means of a schematic of the geometry. Each component of a configuration is
input as a plane of constant x,y or z and given the flow domain to be within
the cube (0-1000, 0-1000, 0l0001,it is straightforward to generate the
appropriate block structure for a Cartesian grid given the constraint of one
boundary condition type per block face. Following the ideas sketched in
two dimensions, a first step to the construction of a component adaptive grid
topology is the addition of planar cuts in the domain. For a given isolated
component the local embedding of a C or 0 structure is reasonably straightforward.
The key to extending such an approach to multiple components is to ensure that
the new blocks introduced to provide the C and 0 structures never map to other
new blocks for different components. In other words, the introduction of the
new blocks must always be performed in a locally Cartesian block structure.

In practice, the use of the algorithm is straightforward. Given the
geometry of Figure I it is clear that it is possible to construct several
topologies within the class of topologies generated by the automatic approacl..
The freedom to construct different grid structures rests with the specification
of the schematic. A study of the geometrical features could lead to the
definition of the following schematic.

Body: (300,0,300), (700,0,300), (300,0,700), (700,0,700)
Wing: (500,0,500), (600,0,500), (500,400,500), (600,400,500)
Canard: (400,0,550), (450,0,550), (400,200,550),(450,200,550)

In this form the canard is upstream of the wing and lies above the wing
elevation. Such a schematic (schematic A) would lead to a C-structure around
the canard which continued above the wing. An outline of the expected grid
structure at the body side is given in Figure 4.

FIGUJRE 4. GRID STRU~CTURE OM THE BODY DERIVED FROM GEOMETRICAL SCHIEMA71C A.

In contrast, it would also be appropriate for geometry A to define a schematic
in which the elevation (i.e. z coordinate value) of both wing and canard were
the same. In this case the schematic for the canard could be redefined to be

Canard: (400,0,500), (450,0,500), (400,200,500), (450,200,500)

This schematic,(schematic B), wouid then lead to a grid structure on the body
side as indicated in Figure 5. Both topologies are sensible for the configuration
and the better of the two ran only be determined by viewing the grids generated
by the two approaches.

Having defined a schematic, the topology generator, which is executed
interactively, performs the necessary planar cuts ready for the embedding of
the C and 0 grid structures. The user is prompted for the block dimensions,
which, since at this stage the block structure is Cartesian, requires the
specification of IB+JB+KB values, where IB,JB and KB are the number of blocksin each of the coordinate directions. The transformations are applied to produce
the final toeolon he new blocks are assigned dimensions consistent with the
existing structure. For the first schematic the total number of blocks in the
construction is 430 (IB)9,JB=4,KB=lI) and in the second 322 (IB=9,JB=4,KB=8).
The topology generator also outputs auxiliary information for the post-processing
of grids and flowfield solutions. The algorithm also outputs information which
is used by the grid generators to assist with grid control.
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FIGURE S. GRID STRULCeTlRlE OMNH BODY DEIVED FROM GCWIETRICM- SCECMIErIC 2.

The grid structure on the surface of each component and on the
outer boundary is readily derived from the three-dimensional grid topology.
The outer boundary is constructed from a number of different components.
These comp9nents, which when combined form a rectangular box, are defined
to be consistent with the field topology. For example, the planar cut in
the topology at the wing tip extends to the outer boundary and forms the
intersection between two parts of the boundary. It is consistent with the
spanwise grid topology to set this intersection line to the y coordinate
of the wing tip. A similar procedure is adopted on the cut at the
canard tip. Each component of the outer boundary is modelled in a similar
manner to a component of the configuration and the grids are generated in
parametric coordinates.

SURFACE GRIDS

The grids on the surface of each component are generated in parametric
coordinates and in an order which ensure that grid properties of one
component can, if necessary, be used to ensure a consistent grid on another
componcnt. The grid topology for the body, consistent with the field
topology generated from schematic A of the wing-body-canard configuration
geometry A, is given in Figure 6.
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FIGURE 6. BLOCK STRUCTURE FOR SURFIACE GRID OM BODY USinG Sct.pqrTIC p.

The contour path ABCDEA represents the body/plane of symmetry intersection
line and the paths FGH, LMN the intersections between the wing/body and
canard/body, respectively. To generate the grid in this block structured

domain using the elliptic equations (1) the necessary boundary data must be
defined on these paths. The appropriate point distribution is of considerable
importance since, using the Thomas and Middlecoff approach to compute the
control function pl, it effectively determines the quality of the6 grid in
the interior of the domain. Grid points on the paths FGH and LMN are computed
from a geometrical intersection routine which ensures that appropriate grid
clustering occurs at the leading and trailing edges. To ensure a suitable
distribution of points along the path ABCDEA, information from tne automatic
topology generator is utilised. Descriptors which are associated with features
of the geometry and topology paths are assigned to particular blocks and edges.
For example, the descriptor wingtex is a path of constant x associated with the
trailing edge of the wing. As the contour path along ABCDEA is prescribed, the
point distribution routine within the surface grid generator examines any
topology path descriptor which crosses the contour path in a normal direction.
When two such paths cross, grid points are attracted to both sides of the
intersection. Additional attraction and repulsion of grid points occurs where
corners in the contour path are detected. In this way appropriate grid point
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clustering occurs on the path ABCDEA which is consistent with the confiquration
and the topology. In schematic form the idea is illustrated in Figure 6. This
approach, outlined for the body, is applicable to the generation of all surface
grids.

Figure 7 shows a grid in the parametric coordinates for the body of
geometry A using schematic A for the topology. Grid point clustering, so
carefully constructed on the boundaries, can be seen to influence the interior
grid points. The grid in physical coordinates along with the component grids
on the wing and canard, is illustrated in Figure 8. The nose of the body is
reasonably well defined using the polar structure in the field topology and the
inserts show the locally embedded C grids around the wing and canard. Figure 9
illustrates the effect of grid point clustering on the component parts of the

outer boundary. This proves essential in achieving a good quality grid in the
field.

FIGURE 7. SURFACE GRID In PRMrETRIC COORDINATES FOR THE BODY OF
GEOMETRY A usIMG TOFOLOSY DERIUED FROM SCHEMATIC A

FIGURE 8. GRID DO TCE SURFACE OF GEOWETR A SHOIG IHE GRID STRUCTURE
OBTAIED FROM SEMTIC .

FIGURE 3. GAID On THE OUTER 8DOUnARY OF TE FLOU DOaTriC.

This method of grid point distribution is applicable to all grids
generated from the automatic topology generator. To illustrate its use on the

topology generated from schematic B, Figu 10 shows the grid on the surface
of the configuration. The topological differences between grid structures in
Figure 8 and IT are evident. Both grids are of a high quality, but perhaps
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the grid structure in Figure 8 results in slightly less skewed cells in the
region between the wing and canard. In both cases, the forebody is well
defined.

FIRsE 10. ctID ON THE SURFACE OF GEOMETRY t SHOWtI G THE GRID STRUCTURE
OBTAINED FRO $SiErTIC 11.

FIELD GRID

Once the grids on the surface of the configuration, the plane of symnetry
and the outer boundary have been generated, the grid points in the field are
derived by solution of equation (1). The source functions pi on the boundaries
are computed from the fixed boundary data and interpolated through the field
ensuring that the p(i =l,2,3) are consistent on block faces and edges.

Grid control may be enhanced by fixing some internal block boundaries
but this greatly increases the labour of grid generation. Sections of a
field grid-generated using the topology of schematic A are shown in Figure 11.
The component adaptive nature of the grid is evident with locally embedded C
grids around the wing and canard and a polar grid around the body. The grid
point distribution in the field can be modified by an appropriate choice of
parameters which modify the grid control functions p

1 
in particular regions

of the domain.

FIGURE It. FIELD GID SECTIIS HIGHLIGTING THE COM5TIET IL A !TIvE
TSOOLGY frTATCILME.

As a final illustration of the power of our approach we will apply the
method to geometry B. As was already noted, the spacing between the canard
and the wing at the body side and the canard tip leads to a conflict in
the appropriate choice of topology. The geometry at the body side would
indicate a suitable schematic (schematic C) for the topology to be
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Body: (300,0,300), (700,0,300), (300,0,700). (700,0,700)
Wing: (500,0,500), (600,0,500), (500,400,500), (600,400,500)
Canard: (400,0,550), (500,0,550), (400,200,550), (500,200,550)

This implies that the trailing edge of the canard has the same x value as the
leading edge of the wing. A schematic of the grid on the body side for the
topology is shown in Figure 12. However, if the position of the canard with
respect to the wing is noted at the canard tip, it would appear sensible to
define the.canard trailing edge to be forward of the leading edge of the wing.
This would lead to the schematic A and the appropriate grid structure for
geometry B is given in Figure 13.

FIGURE t2. GRID STRUCTURE ON THE BODY DERIVED FROM GEOMETRICAL SCHEMATIC C.

_--------___

FIGURE 13. GRID STRUCTURE On THE BODY DERIVED FROM GEOMETRICAL SCHEMATIC A.

The additional blocks of grid introduced between the canard and the wing
prove necessary to resolve the region between the two surfaces in the region
of the canard tip. Ideally, this region should be further resolved using a
grid embedding approach or the introduction of regions of unstructured grid(

9
).

However, the flexibility of our approach enables a wide range of grid structures
to be investigated and the automatic nature of the procedure ensures that the
process can be performed quickly and efficiently.

Sections of the field grid, together with the grids on the configuration,
are shown in Figure 14. As previously noted, the component adaptive nature
of the grid structure is evident.
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FIGURE 14. FIELD GRID SECTIIIS HIGtIGiI THE cComrWEIT MDlIqUE
TOPOLOGY STRUCTURE.

FLOW CALCULATION

In the absence of any strict criteria, the acceptability of a grid is
judged firstly by eye and secondly by its performance with a flow algorithm.
We have endeavoured to prove our grids by computing the flow over the
wing-body-canard configurations using a numerical algorithm for the solution
of the Euler equations. The algorithm, based on the ideas of Jameson, Scwidt
and Turkel' , was developed by the British Aerospace Euler Core Team at
Filton, Bristol and accepts block structured grids. An example of theoretical
predictions for the flow over the wing in configuration B is given in Figure 15
in which the onset Mach number was 1.2 at an incidence of 6. For comparison
the experimental data is also presented.

The good agreement with experiment for the two topologies generated by
schematics A and C is evidence that, given an accurate flow solution algorithm,
the grids generated from our method provide the basis for meaningful flow
simulations.

CONCLUSIONS

A method has been presented which is capable of generating component
adaptive grids. The approach has been illustrated using wing-body-canard
geometries but is applicable to a wide range of complex aerodynamic configurations.
The new method of topology generation, combined with the approach taken to grid
control, provide a powerful means of exploring the most suitable topology for a
given geometry. Grid control parameters are available to the user to modify the
grids for particular geometries but the system does not require the user to
partake in long interactive sessions on a work station to generate grids. The

suitability of the component adaptive grids for flow simulation has been
demonstrated by comparing theoretical predictions with experiment.
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4.5 GENERATION OF MULTIPLE BLOCK GRIDS
FOR ARBITRARY 3D GEOMETRIES

J.P. Steinbrenner, S.L. Karman, Jr., and J.R. Chawner
General Dynamic. Fort Worth Division

Fort Worth, Texas, 76101, USA

SUMMARY

A grid generation procedure has been developed to create complex block grid systems,
beginning with the generation of block surfaces, up to the generation of the full block
volume grids. The multiple block concept is shown to facilitate the gridding of very
complex geometries and also to allow larger sized grids to be run with a multiple block
Euler solver. The entire grid generation process is broken into logical steps, each step
described in detail. Three examples of grids systems generated with these techniques are
given, thereby validating the procedure. Finally, current research topics in grid
generation and future plans are discussed.

INTRODUCTION

one of the traditional impediments to the computational fluid dynamic analysis of
complex aircraft configurations has been the inability to generate a suitable three
dimensional grid efficiently. A suitable grid is defined as one which accurately
describes the configuration geometry and provides sufficient resolution of flowfield
phenomenon (as determined by the local truncation error of the governing differential
equations) while remaining consistent with computer core memory limitations. The
material presented in this paper is the result of a three year effort at General Dynamics
to develop a three dimensional grid generation package applicable to arbitrary
configurations. Procedures developed during this period have met these goals to a
certain degree, in that an arbitrary grid system may now be generated with the codes in
an efficient amount of time. However, several problems still remain unresolved or
unaddressed.

This paper begins with a brief discussion of the multiple block philosophy used in
the General Dynamics flow solvers. Following this is an overview of the methodology used
in generation of three dimensional grids, including the generation of three dimensional
surface grids, the assembly of surfaces into three dimensional volume grids, and the
assembly of volume grids into multi-block grids systems. The utility of the grid
generation procedure is then demonstrated through discussion of three dimensional grids
surrounding three complex configurations: the F-16 fighter aircraft, a delta wing/body
configuration, and an afterbody of a generic hypersonic vehicle. The nuances particular
to each grid system are summarized, and any difficulties encountered in the overall grid
synthesis procedure are explained. In closing, future requirements and in-work
developments in grid generation are discussed.

MULTIPLE BLOCK TECHNIQUE

The underlying idea of the subject multiple block scheme is to reduce a
geometrically complex region into several smaller, more manageable regions, referred to
as blocks. Each block is represented mathematically by a number of discrete grid points,
ordered in a three dimensional array of constant dimensions. The flowfield may be
divided into any conceivable structure provided that cell to cell matching on block
boundaries is maintained. This does not require that one wall of a given block match
exactly with a wall of another block, only that each cell on an interface wall match with
a cell of an interface wall somewhere in the grid system. The requirement of cell to
cell matching was chosen to eliminate complex interpolations between blocks and to
circumvent flowfield conservation problems across boundaries.

There are numerous advantages to multiple block schem6s, and five of the more
significant implications are summarized below.

1. The domain surrounding a complete aircraft or aircraft component is generally
too geometrically intricate to model with a single three dimensional grid. This is the
case, for example, with the undersurface of an F-16 fighter aircraft. The vehicle
topology in the inlet diverter region is such that use of a single three dimensional grid
would result in considerable skewness of grid lines. By utilizing several separate
blocks in this region, however, the aircraft geometry can be accurately modeled while
maintaining nearly orthogonal grid lines. The F-16 grid is described in greater detail
later and also in Reference 1.

2. For increasingly many applications, a large number of grid points i. needed to
resolve accurately the most salient features of the particular flow field. This often
creates storage requirements beyond the memory limitations of the computer. In these
cases another advantage of the multiple block grid scheme becomes apparent. Since
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multiple block flow solvers require that only one grid block occupy core memory at a
time, while the remaining blocks reside on disk or in solid state storage, a greater
total number of grid points may be used if they are divided into smaller, less memory
intensive blocks. This advantage also holds for simple topologies where the grid
generation is not complex but a large number of grid points is still required.

3. Because boundary interfaces need to match on the cell level only, it is possible
for two adjacent blocks to have different topologies. Therefore, a combination of grid
topologies may be used to model a given geometry, with each block size and topology
chosen to produce the relative grid resolution needed. Proper grid resolution in also
more easily controlled by using a large number of blocks by effectively increasing the
number of specified grid points in the system.

4. By breaking the domain into a number of blocks, grid singularities can be placed
on block boundaries and can sometimes be eliminated altogether. The branch cut for an
H-grid about an airfoil, for example, becomes a block boundary if the flow field is
divided into two blocks, one above the airfoil and one below. Hence, no special coding
of the flow solver is necessary to handle the boundary conditions for an internal plane
of the grid.

5. Normally a flow domain is divided into segments which approximately correspond
to a particular aircraft component such as the nozzle, forebody, wing, or tail. This
simplifies post-processing of the flow field solution. In graphical display, for
instance, not all of the flow field domain must be displayed to view the flow phenomena
about a given component.

Along with the advantages of multiple block systems comes an inherent disadvantage:
that of the difficulty in dividing the domain into suitable blocks. Several competing
considerations come into play when determining sub-domain boundaries, such as relative
clustering, individual block dimensions, and physical block sizes and shapes. The fact
that each block influences the remaining blocks only compounds the problem. Although
work has begun in developing artificial intelligence techniques to aid in this process,
currently no automated means of subdividing domains exists; the user must rely on
experience, either acquired or borrowed. This continues to be a serious roadblock to the
very fast general grid generation methods, and is one of the reasons why there is a steep
learning curve for new users. For each of the applications to follow there was no
definitive way to block the domain, and in the case of the F-16, several attempts were
made before the eventual topology was determined. The multiple block technique is
described in greater detail in Reference 2.

AUTOMATED GRID GENERATION METHODOLOGY

Assuming that blocking considerations, grid dimensions and the general topologies
have been ascertained by some means, the grid generation process continues with the
transfer of the ideas from concept to reality. Over the past three years, a series of
computer programs have been developed at General Dynamics which take the grid system from
beginning to end in a straightforward, logical process. The concepts built into these
programs are described below.

Typically there are several individual blocks in a given system, each block having
three varying computational coordinates. On each block, then, there are six faces, each
face with two varying computational coordinates. Furthermore, on each face there are
four edges, containing only one varying coordinate. Grid generation proceeds from the
inside out, starting with the generation of face edges, followed by the determination of
face surface distributions, and ending with the computation of block volume
distributions. Since each step is influenced by earlier steps, it is sometimes necessary
to jump backward and forward in the process, until the desired grid system is obtained.
Fortunately this is easily done with the existing methods.

The first program used in the process, an interactive surface grid generator,
performs two of the first three tasks. Originally written with a minimal amount of
computer graphics, this program has recently been converted for use on a Silicon Graphics
Iris Workstation, and has been updated considerably to take advantage of the machine's
outstanding graphics capabilities. This improvement alone has cut the surface grid
generation time by at least fifty percent, compared with earlier methods.

In generating a surface grid, there is usually a constrained surfece on which the
resulting grid must lie. This is the case, for example, with the grid used to describe
the external geometry of the F-16 aircraft shown in Figure 1. An exception to this is
block interface surfaces interior to a flow domain, where only a degree of smoothness is
necessary, and not a specific shape. The shape of the constrained surface is often
difficult to represent analytically, and so numerical models are used. Suitable models
consist of a number of patches, each patch containing an N x N number of well-ordered
data points. Collectively these patches are referred to as database networks, and there
are only a few restrictions on their form. Databases may overlap, have different
dimensions, collapse to a point, or close on themselves. Furthermore, database
interfaces do not need to match exactly or to be oriented consistently. Their sole
purpose is to insure that resulting grid points adhere to the surface contour of the
geometry. The F-16 depicted in Figure 1 is an example of a fifty patch database network.
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This network was used to generate the F-16 grid system described later.

Databases are proving to be a convenient method of surface definition, since design
groups often have the ability to generate numerical models of their configurations. Work
is currently underway to develop an efficient method of transferring configuration data
on a CAD/CAM system to a form usable in the grid generation process, and has already met
with a degree of success.

With an acceptable database of the geometry to be modelled, the surface grid begins
construction. As mentioned, the first grid points to be determined are edges of the
block faces. After selecting one of the six faces to work with, one of that face's four
edges is chosen. The physical shape of the edge is defined by a number of arc segments
chosen by the user and pieced together to form one discrete representation of the
boundary shape, made continuous through the use of exponential splines (Reference 3).
Arc segments may be pulled from databases, input interactively, read from exterior files,
or constructed as straight line or circular arc segments. The user then divides the
continuous boundary into sub-boundaries, placing a chosen number of grid points into each
sub-boundary. Points are distributed by any of several techniques, the most popular of
which is a two-sided stretching function developed by Vinokur (Reference 4)

When each of the four face edges have been constructed, the face interior points are
given provisional values. Transfinite interpolation is used for this purpose, but with
interpolant functions as suggested by Soni (Reference 5), which maintains clustering near
boundaries to a higher degree than conventional interpolants. Although this technique
provides a very good initial solution, it is still usually necessary to use an elliptic
solver to smooth slope discontinuities and to enforce interior point clustering. The
technique employed is the Thomas (Reference 6) scheme, which incorporates the standard
Thompson (Reference 7) elliptic grid method in two dimensions with additional terms added
to account for the curvature of the surface shape. This technique generally creates
smooth distributions of grid points along the constrained surfaces, but the exact
distributions are determined by the choice of weighting functions employed. Two
techniques are available: the Thomas and Middlecoff (Reference 8) method; and a
variation of the Sorenson (Reference 9) method, extended to three dimensional surface
shapes, rather than planar surfaces.

Successive over-relaxation is used to advanced the discretized equations toward
convergence, and the program allows the user to view the grid as it converges, stopping
the process at any particular time. As a fully three dimensional surface is created, x
and y values are calculated directly from the grid solver, and surface-conforming
z-values are updated through isoparametric interpolation from the database networks.
Since most grids do not lie primarily in the x-y plane, it is possible in the grid
program to rotate the grid interactively to an orientation which would allow the surface
shape ( z ) to be calculated as a function of x and y. When the grid cannot be rotated
to an orientation where the surface is not double valued anywhere (more than one z value
for a given x and y), as is the case for many internal flow applications, two possible
remedies exist. First, the user may subdivide the surface into a number of subfaces,
solving on each subface in an acceptable orientation, until the entire face is
sufficiently defined. Secondly, the user may engage an alternate elliptic solver - one
written in parametric rather than physical variables - whose parametric coordinates
correspond to the N and N indices of the database. This technique is described in detail
in Reference 10. The latter method allows the entire face to be solved at once, and is
considerably faster than the physical variable solver, because the time-consuming search
algorithms in the z-interpolation routine are no longer necessary. Unfortunately, the
utility of this technique depends on the ability of the surface to be represented by a
single database, which is sometimes difficult. However, the combination of both
techniques have allowed any surface grid encountered to date to be created without
significant difficulty.

There are many other features incorporated into the surface grid generation program
which add to the code's speed and efficiency. For example, the latest versions allow all
six walls of a given block to be generated in one interactive session, maintaining point
continuity on all twelve block edges as the block is generated. This eliminates the
cumbersome and confusing task of copying boundaries of one wall into a boundary of
another adjacent wall and then assembling all six faces together properly. Also, as
mentioned earlier, it is possible to break a face into any number of subfaces, which may
either overlap, coincide or neither. By so doing a certain region of the face may be
fixed in space while the other points move toward convergence, essentially allowing
non-rectangular computational regions to be generated.

Experience has shown that an interactive surface grid generation scheme affords the
user a very high degree of control over grid point placement, and extensive graphical
capabilities add to the ease in which a grid may be constructed. Message windows added
in the latest versions display diagnostic information which reduces confusion and
eliminates the duplication of work. A sample screen from an IRIS Workstation during a
typical grid generation session is supplied in Figure 2 indicating the layout of the
diagnostics. Output from this code are files which contain all six walls of a given
block, and the entire process is repeated for each of the remaining blocks in the system.
The interactive grid procedure is documented in Reference 11.

Distribution of grid points on the interiors of each block grid is the final step in
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the process. As in surface grids, it is necessary first to assign provisional values to
interior grid points before an elliptic solver is called. Transfinite interpolation is
again chosen, with interpolants calculated in the rmanner of Soni (Reference 5). Again,
this scheme usually provides a good degree of clustering throughout the grid, but local
regions of crossed grid lines, corresponding to negative values of the three dimensional
Jacobian, sometimes result, particularly when there are sharp corners or very large
degrees of clustering on the boundaries. When negative call volumes exist, there are
several options available, all of which utilize the three dimensional elliptic grid
generation equations popularized by Thompson at al. (Reference 7). The first option is
to calculate the cell volumes throughout the grid, flag the negative volumes and volumes
which border the negative volumes, and to solve the elliptic equations at all of the
flagged points. In this option, weighting functions are set equal to zero. This method
will eliminate all of the negative Jacobians, but will not eliminate discontinuities in
grid line slopes which occur from transfinite interpolation. If the discontinuities are
severe, a second option is used. Here, weighting functions which correspond to the
current grid point locations are calculated, with the mixed-derivative terms eliminated
to allow for a greater degree of smoothness. The equations are then solved iteratively
towards convergence. Still another technique is used when neither method above proves
adequate. The GRAPE technique, developed by Sorenson (Reference 9), will allow for an
exact grid point spacing and transverse angle specification at the boundaries of the six
walls of the block. This method is particularly attractive when strict orthogonality is
desired at one or several of the block walls, or when very tight clustering is needed at
the walls. All of the three dimensional techniques described employ an successive
over-relaxation scheme as a means of advancing the numerical solution. An Approximate
Factorization scheme is also available, but has not yet been found to be superior to the
point relaxation scheme.

None of the three dimensional schemes described above will produce acceptable
interior grid point distributions for every conceivable set of block walls. In fact, it
is doubtful that such a scheme will exist in the near future. For this reason, a greater
emphasis is placed on careful generation of surface grids which will not force the
interior grid lines to follow unreasonable paths. This is possible with the surface grid
generation program, which allows boundaries or walls to be created and recreated quickly.

The block grid generation process is repeated for each individual block in the
system, each block generated independently. Consequently, the resulting block system
generally exhibits slope discontinuities across block boundaries. The discontinuous
lines can be controlled to some degree by judicious grid point distributions on adjacent
faces, but it has been observed that slight discontinuities in slope present no major
problems, particularly when using a finite-volums flow solver. Despite the efforts to
develop an all-encompassing grid generation package, certain problems still exist, and
are discussed later. Future research and development topics to further aid in the grid
process are discussed later as well.

APPLICATIONS

The three examples in this section, presented in chronological order of generation,
illustrate the class of configurations that can now be treated on a fairly routine basis.
These examples were created as the grid generation programs evolved, and in fact
influenced the structure of the progrea as new problems were uncovered.

F-16 Fighter Aircraft Grid

A three dimensional grid was generated for an Euler analysis of the F-16 fighter
aircraft. The grid, which models the left half of the aircraft, contains twenty blocks
with a total of 530 000 grid points. All components of the vehicle are simulated
including the wing, body, horizontal and vertical tails, inlet, nozzle and ventral fins.
The wing tip missile and missile launcher, however, are not simulated. The database used
to define the F-16 surface geometry is displayed in Figure 1. A detailed discussion of
the grid generation and Ruler analysis of this configuration can be found in Reference 1.

The first step in generating this grid was development of the blocking structure.
The geometry was easily divided into upper and lower domains, with the wing and
horizontal tail residing in the interface plane between the two domains. In order to
maintain cell to cell matching across this horizontal block boundary the grid topology
for both domains needed to be the same. This became a considerable restriction in
developing acceptable block arrangements for both domains.

The H-grid topology of the lower domain was selected based on the blocking
requirements of the inlet diverter and ventral fin regions. Just aft of the main
inlet face the geometry was simulated as shown in Figure 3. The diverter section
above the inlet was discretized with one very small block which collapsed jito the
environmental control system inlet. The H-grid which ran alongside the inlet
continued down the fuselage to the ventral fin area where the fin was aligned wilh the
block boundary. The entire lower domain, shown in Figure 4, contains thirteen
blocks. Because of the complexities of the geometry, it could not be combined into
one contiguous block.

The upper domain, however, was generated in one contiguous block and then divided
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into the seven blocks outlined in Figure 5. Generation of the upper domain H-grid was
simplified relative to the lower domain because there wre no fins or inlets in this
region. The sizes of the blocks were chosen to optimize the core memory usage. A view
of the upper surface grids is shown in Figure 6.

When this analysis was begun, the surface grid programs were still under
development. At that time, the code required that each face of a given block be made
individually, and that shared boundaries be written to a file and read in for all
adjoining faces. Also, the program had no substantial graphics capabilities. At the
same time, the corresponding block Euler flow solver was under development. These
problems combined with the geometric intricacies caused the grid to be generated at a
very alow pace. Consequently, nearly a full-man year was needed to generate the complete
twenty block grid system.

Delta Wing/Body Grid

Later, a three dimensional grid was generated for an Euler analysis of a supersonic
delta wing configuration. This configuration, shown in Figure 7 was obtained from
References 12 and 13. The geometry included a thin delta wing, slender body and a
vertical tail. Lateral and longitudinal stability derivatives were to be computed from
the Euler flow field solution. Since there was no left-right symmetry in the flow field,
the entire aircraft was modelled. The complet- multiple block system contains four
blocks and 200 000 points. This configuration is geometrirally simpler than the F-16
aircraft, and at the time of generation, the grid generation codes were more advanced and
the block Euler code was fully operational.

The block arrangement was also simple compared to the F-16 due to the lack of
propulsion system components and auxiliary control surfaces. The four blocks are
arranged to discretize the four quadrants about the aircraft. The wings and the vertical
tail are simulated as part of the interface planes between the upper and lower blocks and
the symmetry plane is the natural boundary between the left and right blocks. The
farfield boundaries were positioned close to the body because the Euler analysis was to
be done at supersonic conditions. The outer boundary is extended upstream of the nose
just far enough to capture the bow shock and the downstream face of the grids is
positioned at the end of the body and vertical tail.

Figure 8 shows the boundaries of the block of grid used to describe one of the upper
quadrants. A location on the body at midwing is arbitrarily selected as a face boundary.
The grid in the cross planes is then established as an O-grid while the grid in the
transverse planes is a C-grid. This type of topology results in a singular line of grid
points extending forward of the nose. The complete grid on five of the six faces of this
block is shown in Figure 9. Generation of the lower quadrant block proceeded in a
similar manner. Then, the symmetrically opposite blocks were generated by reflection of
the two existing blocks.

Less than a man-week was needed to generate this block system, and there are several
reasons for this significant reduction in manpower. The foremost region was the large
amount of experience gained from generation of the F-16 grid which was directly
applicable to this geometry. Also, an advanced version of the grid generation procedure
was available which employed extensive interactive graphics on an IRIS Workstation. The
biggest single reduction in manpower was due to the simplicity of the geometry, but the
program enhancements helped considerably as well, probably speeding the entire process up
by an order of magnitude.

Hypersonic Vehicle Afterbody Grid

A three dimensional grid was generated for Euler analysis of the afterbody and
nozzle region of a generic hypersonic vehicle. The geometry of this symmetric region is
defined by the database shown in Figure 10. The afterbody has a rounded cross section
which necks down to a sharp trailing edge. The underside of the expansion ramp is
aligned at twenty degrees with respect to the horizontal. The engine module on the
underside of the afterbody has been approximated by a thin walled rectangle with
sidewalls that extend approximately one half the length of the lower flap. The outflow
boundary of the grid is located one afterbody length downstream of the ramp end and the
farfield boundaries are conically shaped.

The first step in generating this grid was to develop the blocking structure. The
blocking arrangement that resulted was based on three considerations. The first issue
dealt with was the differing shapes of the inside of the engine module and the exterior
of the afterbody. The rounded afterbody shape made a C-grid in this region most
advantageous. However, in order to avoid a line singularity at the center of the engine
flowfield, an H-grid was chosen over a C-grid for the internal region.

Having defined the blocking based on grid topologies the next issue considered was
th block matching in the circumferential direction. The connection of a C-grid to an
H-grid as shown in Figure 11 would require that the grid points used on the perimeter of
the H-grid match with the inner radial boundary of the C-grid. The engine module
presented a particular challenge here. Due to the requirement of point to point matching
between blocks, block boundaries were set on the corners of the engine module and
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extended radially outward to the farfield boundary. These block boundaries required that
the number of points on the perimeter of the internal H-grid match the number of points
on the inner radial boundary of the C-grid. Based on these considerations the external
grid was blocked into three circumferential sections corresponding to the top, side, and
bottom of the engine module.

The final issue considered in blocking this afterbody grid was one of number of grid
points Per block. At this point the grid had been divided into a minimum of four blocks:
a rectangular H-grid surrounded by three sections of C-grid. The total number of grid
points was limited to 400 000 in order to keep flow solver run times at an acceptable
level. Considerations of geometric accuracy led to the decision to use 126 points in the
streamwise direction (96 points up to the end of the afterbody), 81 points in the
circumferential direction, and 21 points in the radial direction In ,dcr to satisfy
computer core memory limits the number of points per block needed to be approximately
30 000. This was easily accomplished by adding block boundaries at two streamwise
stations, namely at the end of the lower flap (46 points) and at the end of ;he upper
flap (51 points).

The grid for this afterbody has been divided into twelve blocks as shown in
Figure 12; one radial block boundary separates the H- and C-grids, two circumferential
block boundaries define the shape of the engine module, and two streawise block
boundaries enforce the limit of grid points per block. The blocking process described
above was not very difficult but still consumed approximately two days since it was all
dons by hand. Much of the delay was a result of selecting the proper number of grid
points per block. The blocking decisions were simplified by the smooth lines of the
afterbody geometry. A graphical procedure on a workstation employing some form of
artificial intelligence could have cut the time for this task considerably.

The next step in creating this three dimensional grid was generation of the two
dimensional surface grids for each block. In order to assure grid line slope continuity
across block boundaries the entire external C-grid up to the trailing edge of the
afterbody (three of the twelve blocks) was generated as one block. At the time of this
analysis a new feature had been added to the interactive grid generation procedure which
allowed for all six faces of a block to be generated simultaneously. This feature proved
to be extremely helpful in assuring point continuity on the face edges. The topology for
the upstream outer block is shown in Figure 13 along with the associated grid indices.
Specifically, generation of the upstream face will be described since it was complicated
by the concentration of points in the engine sidewall region due to the internal H-grid.

The boundaries of the upstream face are shown in Figure 14. The farfield and
symmetry boundary shapes were selected based on consideration of farfield boundary
condition influence on the body whereas the engine module and afterbody shapes were
obtained from the database shown in Figure 10. To illustrate the evolution of a
particular wall, a close-up of the circled region in Figure 14 is presented in
Figure 15a, with only the boundary points displayed. The grid on this face was
initialized using an algebraic transfinite interpolation scheme yielding the grid shown
in Figure 15b. Obviously, the grid line crossing, lack of resolution of the corner,
non-orthogonality at the corner, and small cell sizes are unacceptable. The reason for
the problems in this case are the highly stretched and compressed boundary point
distribution (multiple length scales) and the discontinuities in the boundary shape.
Since boundary orthogonality and clustering in the corner were deemed necessary, the
Sorenson weighting functions were used to solve the grid equations, and resulted in the
grid shown in Figure 15c. Resolution of the corner and orthogonality has been obtained
but severe pinching of the grid lines has appeared in the corner. This pinching was
relieved by running the grid solver using the Thomas and Middlecoff weighting function
resulting in the final grid shown in Figure 15d. Once this upstream face was completed
work on the remaining five faces of this block continued. This process required several
iterations with the grid solver, changing the weighting functions from one formulation to
the next in order to obtain the described grid point distribution. The interactive
graphics employed in the grid generation program allowed the user to view the grid as the
solver progressed at each iteration. This avoided the continuation of bad solutions or
gave the opportunity of stopping the solution when a good solution was obtained.

As each face of the three dimensional grid was completed its boundaries ware written
to the corresponding boundaries of the connecting faces, simplifying the generation of
these grids. Eventually, then, the last face worked upon already had all four of its
boundaries defined by the completion of the adjacent faces. A view of the four of the
six faces of this complete grid block is shown in Figure 16. Generation of the remaining
blocks of the twelve block grid proceeded in a similar manner.

CONCLUSIONS

The viability of the present methods to generate multiple block grid systems has
been verified for only three geometries in this paper, but has been used to generate
numerous other systems as well. Viability, of course, can only be ascertained after the
grid is used in a flow solver, but with the techniques In this work, a reasonable degree
of confidence can be obtained before the grid is taken to task. An additional program
has been developed as a post-processing tool in grid generation to further increase the
grid confidence. This program allows the operator to load in and scroll through a grid
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block, one computational plane at a time, adjusting the scrolling speed as desired. This
feature makes it possible to digest a large amount of information about the grid in a
short amount of time, without cluttering the screen with unneeded information. The
general continuity of the grid lines can also be determined with this program in a short
period of time.

Although a grid system could be generated for almost any imaginable geometry with
the present scheme, certain geometries still present a groat amount of difficulty.
Reasons behind the difficulties are stated below. First, the technique of breakinq a
domain into blocks is not easily taught, and becomes a formidable task for complicated
domains regardless of the user's expe-ience. Secondly, the total time needed to generate
a grid system has been reduced considerably over the past few years, but is not yet to
the level that makes a very fast (2-3 days) analysis of a configuration possible. Part
of this particular problem is due to the speeds of the computers used, but there is also
a need for further automation of the grid generation process. Finally, when viewing a
three dimensional grid, it is difficult to determine if everything is as it is expected
to be, especially with grids of large dimensions. This becomes even more difficult with
multiple block systems, where grid boundaries connect to others in a pre-specified
manner.

These problems have been the primary impetus for continued development of grid
generation methods at General Dynamics. As mentioned earlier, artificial intelligence
techniques have begun to be used to assist in the domain blocking procedure. These
methods may not yet be ready for use in three dimensional block grids, but a set of rules
in determining blocking boundaries are finally beginning to be formulated. Currently,
after determining block boundaries, a file is normally created by the user which defines
the connectivity of the block grid system. This file is then input to the flow solver,
and the grid is generated independently. Work is already underway in developing a
program to allow the ocnnoT ivity file to be created in a interactive graphical
environment. Conceptually, this program would output two files - one each for the flow
solver and the surface grid generator. The corresponding connectivity file would be
attached to the grid generator, and the entire block systam would be generated, with
connectivity automatically maintained as specified by the file. Thin alone would reduce
the throughput time for grid generation considerably. By having a connection tile, it
would also be relatively easy to use three dimensional elliptic grid schemes in the
entire domain, with continuity across block boundaries. Block continuity is a ; blem
that has been addressed and solved by sone other researchers, but has not yet -sen
implemented into the present scheme. Finally, as the size and complexity of three
dimensional grids increases, so will the reliance on graphical techniques to check and
validate resulting grids. Consequently, work has begun in developing improved graphical
programs to view grids. It is probably not unreasonable to expect implementation of the
ideas above to result in another order of magnitude reduction in the time needed to
create a complex block grid system.
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ACTUAL SURFACE GRIDS
GENERATED FOR INLET-
FUSELAGE SECTION

3 BLOCKS SIMULATING
THE BLOCKING OF THE
INLET-FUSELAGE REGION

Figure 3. F-16 Inlet Diverter region Grid and Multiple Block Structure

Figure 4. F-16 Lower Domain Thirteen Block Structure
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Figure 5. F-16 Upper Doymain seven Block Structure

Figure 6. F-16 Upper Surface Grid
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Figure 7. Delta Wing/Body Four Network Database

Figure 8. Delta Wing/Body Upper Right Quadrant Block Face Boundaries

Figure 9. Delta Wing/Body Upper Right Quadrant Grid (reduced)
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j Figure 10. Generic Hypersonic Afterbody/Nozzle Three Network Database

Figure 11. Generic Hypersonic Afterbody/Nozzle H-Grid to C-Grid Interface
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Figure 12. Generic Hypersonic Afterbody/Nozzle Twelve Block Structure
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Figure 15. Generic Hypersonic AtterbOdY/NoZZlO at Engine Nodule Sidewall Region

a. Boundary Point Distribution

b. Transfinite Interpolation Grid
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c. Sorenson-type Weighting Function Grid

d. Thomas and Kiddlecoff Weighting Function Grid



55

Figure 16. Generic Hypersonic Afterbody/Nozzle External Grid Block

Boundary Point Distribution
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SUMMARY

This paper describes experiences at the NASA Langley Research Center generating
grids about a cranked-wing fighter aircraft configuration. A single-block planar grid
about the fuselage and canard and used with a finite-difference Navier-Stokes solver is
described. A dual-block nonplanar grid about the complete configuration and used with a
finite-volume Euler solver is described. The very important aspect of computing the
aircraft surface grid--starting with a standardized model description--is also
described.

1. INTRODUCTION

In 1984 an effort was initiated at the NASA Langley Research Center to compute
grids and flow fields about a complex fighter-type aircraft configuration consisting of
the following four components:

1. an area-ruled fuselage with a canopy and integrated engine inlet,

2. a bi-convex swept canard,

3. a bi-convex 70-20 cranked wing,

4. a swept vertical tail.

An orthographic view of the four components is shown in Figure 1, where each component

is described by an ordered set of cross sections relative to a primary axis.

The initial step for flow field computation about a configuration such as the
fighter model described above is to establish the number, placement and topology of grid
blocks that cover the physical domain. In our experience the best way to approach the
problem is to sketch the configuration and outlines of the physical blocks. In deciding
on the block structure and topology, it is important to consider the type of flow calcu-
lations that are to be made and the characteristics of the solution algorithm. The grid
itself with its concentrations and dispersions is not of great concern at this early
stage, but the connecting of blocks and the singularities in the blocks are important.

The second step is the detailed computation of the grid on the configuration
surface subject to the chosen topology. This implies that grid points will likely have
different locations from the defining cross section points. Also, grid curves on the
configuration may have a different orientation from the defining cross sections. We
have used a bi-cubic representation (Coons' patches) and corresponding software that has
been developed at the Langley Research Center to mathematically represent aerospacecraft
(Refs. 1 to 3). The intersection of components and the grid curves on the component
surfaces are computed from patch-plane intersections where the planes are user pre-
scribed. The patch-plane intersection capability is also a part of the Langley surface
definition software. In order to use the surface definition software for grid genera-
tion, it is necessary to write a driver code to call the surface generation code, and to
manipulate and manage data for the chosen topology.

Once the configuration surface grid is determined, the next step is the generation
of the surrounding grid for each block. Our general approach is to work from the con-
figuration surface out to the exterior far field boundaries. The remaining steps are
the flow field computations and their analysis. A point that must be considered here is
that logic for the grid generation must be incorporated into the flow field solver and
subsequent visualization or analysis programs.

Two grid topologies are described herein. The first grid has a single block
(Figure 2) with no singularities. This grid extends from a point just behind the nose
of the configuration back to where the the engine inlet begins and is used with a
finite-difference technique to compute viscous supersonic flow. The second grid
(Figure 3) is a dual-block grid above and below the canard and wing. This grid topology
which is the conception of the third author has a polar singularity at the nose of the
configuration and a line singularity (Ref. 4) around the fuselage at the beginning of
the engine inlet. This grid is used with a finite-volume technique to compute inviscid
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supersonic flow about the complete configuration with flow into the inlet. Individual

discussions are devoted to our experiences with each grid structure. The surface grid
generation for the fighter configuration is similar for both grids, and a description of
our experiences is presented.

2. SINGL.-BOCR PLANAR GRID

A single-block planar grid is constructed. The grid is used with a finite-
difference Navier-Stokes solver (Ref. 5) to compute viscous supersonic flow uver the
forward part of the fighter configuration (fuselage and canard, Figure 2). The Navier-
Stokes solver integrates governing equations in a computational coordinate system
related through the Jacobian transformation to the physical domain (Ref. 6). The
solution procedure is a time-split MacCormack technique, and no singularities are
tolerated since the Jacobian derivatives appear explicitly in the equations of motion.
For this reason, planar grid surfaces are started downstream of the nose of the fuselage
and continue past the canard.

The computation of grid points on the fuselage and canard are discussed under
boundary grid generation elsewhere in this paper. The outer boundary in each plane is a
semicircle with increasing radius in the downstream direction (conical surface), and
each plane is divided into an upper and lower part. The two-boundary technique (Ref. 7)
with clustering distributions is applied to the upper and lower portions of each plane.
The clustering is designed to concentrate grid points near the fuselage and canard sur-
faces and toward the canard-fuselage intersection. For the application of the two-
boundary technique, the inner boundary is at the fuselage and the outer boundary is the
circular segment. The left boundary is the symmetry line and the right boundary is the
surface containing the canard. The left and right boundaries are reversed for the lower
grid. Figure 2 shows the grid topology and selected grid surfaces. Figure 4 shows a
solution of the pressure on selected grid surfaces at Mach Number = 2.5, Reynolds
Number - 65,000/Meter, and 0 degree angle of attack using 278,800 grid points.

This grid topology and solution procedure were our first attempts to solve super-
sonic flow over the fighter configuration. There were many lessons learned. The first
lesson is that the grid should not be planar. Grid lines should be aligned with the
leading and trailing edges of the lifting surfaces. We believe that such grid alignment
improves accuracy in the application of boundary conditions, relaxes the requirement for
aLtificial damping, and decreases the coding complexity. A second lesson is that
solving the Navier-Stokes equations with a large number of grid points (200,000 and
more) is extremely taxing on the present generation super computers. At the present
time there is much more potential for routinely solving the Euler equations about
complex three-dimensional geometries as is demonstrated in the next section.

3. DUAL-BLOCK GRID

For the fighter configuration shown in Figure 1 a multiple-block Cl-continuous grid
is constructed for inviscid compressible flow computations (Euler equations) using a
finite-volume technique (Refs. 8 and 9). An initial requirement is for the grid to
conform to the canard and wing edges. A single-grid topology would result in a highly-
seewed grid (Figure 5), and it would be difficult to concentrate grid points at the apex
region of the wing where vortex flow is generated. A dual-block grid topology (Figure
6), having an inner grid which covers part of the wing and fuselage, has a singularity
grid curve on the fuselage and a bounding-block grid curve along the leading edge of the
highly swept part of the wing. This topology is considered to be optimal for the flow
field conditions and is suitable for the finite-volume technique. Once the topology has
been chosen, the next step is the computation of the grid on the configuration surface
which is discussed elsewhere in this paper. However, at this point, distributions for
grid clustering on the configuration surface must be established. For the fighter con-
figuration there is clustering near the intersections of the lifting surfaces and the
fuselage and the leading and trailing edges of the wing and canard. Also, there is a
clustering on the wing surface from the wing crank to the trailing edge of the wing.
Figure 7 shows the topology of the dual-block grid relative to the computational domain,
and Figure 8 shows the surface grid in an exploded view.

The exterior grid generation about the fighter configuration is based entirely on
transfinite interpolation and is therefore computationally efficient. Transfinite
interpolation is the Boolean sum of several univariate interpolations in which distribu-
tion functions can be embedded for grid clustering (Ref. 10). Usually the interpola-
tions are low order polynomial functions such as hermite cubic functions (Ref. 4). The
process is to work from the configuration surface outward, computing subgrids and
"gluing' them together with Cl continuity. For each subgrid, some of the six bounding
surfaces are obtained from the configuration surface grid, some are obtained from
previously computed adjoining subgrids, and some are constructed from simple analytic
functions. Cl continuity is maintained by using derivative information as well as grid
point locations, and Figure 3 shows selected grid surfaces. For the flow field computa-
tions that have been rade thus far, there have been 264,000 grid points. A typical
solution, showing the coefficient of pressure on selected surfaces at Mach number 2 and
an angle of attack of 4 degrees, is shown in Figure 9.
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4. AIRCRAFT SURFACE GRID GENERATION

The fighter configuration shown in Figure 1 has a complex fuselage with sharp
corners, a swept engine inlet and a deep cavity above the engine inlet (boundary-layer
diverter region). The canard and tail geometries are simple, and except for the
70-20 degree crank, the wing geometry is simple. An added complexity is that the root
leading edge of the wing is near the center of the vertical side of the fuselage, and
the root trailing edge is near the top. For the single block grid (Figure 2) the most
complex part of the configuration is not considered. For the dual-block grid
(Figure 3), the boundary-layer diverter region is omitted which requires the reconstruc-
tion of new defining cross sections in the engine inlet region. It is anticipated that
the boundary-layer diverter region will be re-introduced in the future as an additional
grid block.

Each component (fuselage, canard, wing and vertical tail) is mathematically repre-
sented by ordered sets of Coons' patches as described in references 1 and 2. A Coons'
patch is a bi-cubic function with two parametric independent variables. The defining
parameters for a patch are: (1) coordinate positions of corner points; (2) derivatives
of coordinates with respect to the parametric variables at the corners; and (3) cross
derivatives of the coordinates with respect to the parametric variables at the corners.
There is a maximum of forty-eight parameters for each patch. The input to the Langley
surface definition software are coordinates along cross sections at stations along each
component. Corresponding points on neighboring cross sections become the corners of
patches, and it is advisable that the distribution of input points be approximately the
same along each cross section. Cubic splines are fitted along the cross sections
through the defining points and across the cross sections through the defining points.
Also, the parametric variables are defined along and across the cross sections
respectively, and derivatives with respect to the parametric variables are evaluated at
the defining points. At the present time the cross derivatives are set equal to zero in
the Langley software. Coordinate positions interior to a patch are computed by evalu-
ating along the parametric variables and Figure 10 shows an orthographic view of the
fighter configuration which has been densely interpolated and presented as a solid.
Grid points are computed along curves which are the intersections of planes and the
patch definitions. A grid curve can cross several components if the grid topology
requires it, end the parameters defining a plane (coordinates of three points) are
software . TIe intersection of components (fuselage-canard, fuselage-wing, and
fuselage-tail) are computed using the plane-patch intersection software, where the
planes are made perpendicular to the x-axis. A search approach is used to find the
beginning and end of the intersections. Figure 11 shows the fuselage grid and inter-
sections for the canard and wing, and Figure 8 shows the entire surface grid from an
exploded view.

Following are two important lessons that were learnel during the modeling of the
fighter configuration.

1. The initial input description was too sparse for the complex detail of the
fuselage. More cross sections, particularly in the canopy region and engine inlet
region, were required. Also, more defining points per cross section than initially
thought were required.

2. It was necessary to break the fuselage and wing into three sub-components and
two sub-components, respectively. The fuselage was divided at the cross section where
the canopy starts to appear and the cross section where the engine inlet begins to
appear. The wing was divided at the crank. These divisions were made because of the
first derivative discontinuities on the surfaces that are not acceptable in a cubic
spline computation.

The decision to make these changes was reached by observing plots and images that
showed bulging where it should not be and smearing where there should be a sharp change
in curvature. It should be noted that using a high order model representation such as
the Coons' patch description is an effort to minimize the amount of information that
must be user provided and discretely stored. This is constrained, however, by the
complexity of the model and the level of detail that is required. Also, it should be
noted that computer graphics is an essential tool for evaluating the grid generation on
the configuration surf ?ce.

The grid topology requirements on the fuselage and canard are similar for both the
single-block grid and the dual-block grid. Grid curves on the fuselage are in planes
parallel to the defining cross sections. For the single block grid topology, grid
curves across the canard are in parallel planes and are oblique to the canard leading
and trailing edges. For the dual-block grid topology, grid curves conform to the
leading and trailing edges of the canard and the grid surfaces are not planar. This is
also true for the vertical tail.

Grid curves are obtained using the plane-patch intersection capability of the
Langley surface definition software. A grid curve consists of a set of points collected
from the entire array of patch intersections with a plane. Duplicate points are
removed, the points are ordered and their approximate arc lengths along the grid curve
are computed. Note that the number of points to represent a grid curve is user con-
trolled and usually should be greater than the number of grid points that is desired
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along the curve. Coputation and clustering of grid points is obtained through an arc
length redistribution along the grid curve followed by interpolation. The process is
repeated for each grid curve.

5. CONCLUDING REMARKS

Based on our experience with the cranked-wing fighter configuration and other
recent investigations (Refs. 12 to 14), it is presently feasible to generate composite
block grids and compute Euler flow computations about complex three-dimensional con-
figurations. The grid generation procedure that we and the investigators in reference
13 have used is totally algebraic. Other investigators have used a combination of
algebraic and differential grid generation (Refs. 11,12 and 14). The grid generation
software for our computations is experimental and aimed at one geometry type. Efforts
are under way at Langley and elsewhere (Ref. 15) to generalize three-dimensional grid
generation software.

Planning the block structure and topology is the most important grid generation
step. Both the physical requirements (shocks, boundary layers, separation, etc.) and
the solution technique requirements (singularities, skewness, etc.) must be resolved.
Also, the alignment of grid curves with boundary surfaces can affect the accuracy of
boundary conditions and the complexity of solution software. In our planning we have
attempted to minimize the number of grid blocks to cover a domain and consequently
simplify the software logic.

The configuration surface representation must be accurate and robust for extracting
grid data. We have found that a large percentage of the overall effort must be devoted
to surface representation and grid computation on the configuration surface.

Generating the surrounding grid for a three-dimensional configuration using trans-
finite interpolation is straight forward after proper planning and configuration surface
grid generation. The primary aspects to keep in mind are the clustering of grid points
and the continuity of grid curves across grid blocks. We have found that computer
graphics is an essential tool in generating both the configuration surface grid and the
surrounding grid. Our dicection is to move toward doing these tasks in a workstation
environment.

The finite-volume technique is very suitable for Euler flow computations on
multiple-block yLids. Solutions for the dual-block grid (264,000 grid points) about the
fighter configuration can be obtained on the VPS-32 (CYBER 205) in less than one hour.
Our experience with a finite-difference Navier-Stokes solver about a part of the fighter
configuration is that it is extremely time consuming and appeared to be very grid sensi-
tive. The availability of computer memory is adequate for Navier-Stokes solutions of
complex three-dimensional grids, however, the CPU speeds are not adequate. In our case
many hours were required to obtain only one solution over a part of a configuration.
Consequently, we feel that we can make the most progress in the near future by pursuing
geometric complexity of configuration surfaces and Euler flow compvtations.
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Figure I.- Orthographic View of Cranked-Wing Aircraft..

Figure 2.- Single-gI.rf Grid-F- - ' :n.
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Figure 3 -Dual-Block Grid.

Figure 4.- Pressure Solution on Single-Block Grid.
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Figure 5.- Topology for a Single-Block Grid with Grid-Line
Alignment with Lifting Surfaces.

- OUTER GRID

INNER GRID

Figure 6- Topology for a Dual-Block Grid with Grid-Line
Alignmsent with Lifting Surfaces.
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Figure 7.- Topology of Dual-Block Grid Relative to the
Computational Domain.
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Figure 8.- Surface Grid in Exploded View.
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Figure 9.- Pressure Coefficient on Selected Surfaces for Fighter
Configuration.
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Figure 10.- Shaded Orthographic View of Fighter Configuration.

Figure 11.- Fuselage Grid and Intersections.
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4.7 GRID GENERATION FOR AN ADVANCED FIGHTER AIRCRAFT

by
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SUMMARY

The grid generation process for a realistic and complex fighter type aircraft will
be described. The method is based on the solution of biharmonic equations and uses a
single block concept. Only a few user specified input parameters are necessary for the
construction of the space grid and therefore this grid generation system is very simple
to handle. The grid is intended for calculations with an Euler code at transsonic and
supersonic speeds.

I. INTRODUCTION

The automatic generation of computational grids around aerodynamic configurations
becomes more and more important the more complex the body immersed in the fluid is.
While the flow algorithm remains principally unchanged, the grid has to be adapted pro-
perly to every new geometry. Therefore, the grid generation process is the most time-
consuming part of a flowfield calculation for a realistic and complex configuration,
not in terms of computer time but in terms of man power.

A grid generation system for general, complex geometries should be reliable and
simple to handle. This means that grids of reasonable good quality can be generated
automatically with only a very small number of user specified parameters. From expe-
riences with grid generators for automobiles, ducts, wings, wing-fuselage combinations
and multi-finned missiles it seems that this can be done by using the biharmonic equa-
tion as a grid generation system. The whole grid construction is controlled only by the
boundary conditions at the surface of the configuration and at the farfield boundaries.
This formulation simplifies the procedure considerably and as far as we know, it is the
simplest method reported so far.

To show the capabilities of this concept, the grid generation process for a real-
istic fighter type aircraft will be explained. The main features of this configuration
are a fuselage with belly intake, cranked delta wing, canards and two lateral stabi-
lizers. Because of computer storage limitations, a fine modelling of the intake region
(boundary layer diverter, horizontal splitter plate and vertical plate, separating the
left and right engine duct) and installed external stores are not included. This grid
with approx. 500 000 points was subsequently used for several flow calculations with an
Euler code at transsonic and supersonic speeds.

2. GRID STRUCTURE

The first step in every grid generation process is the choice of the grid topology
best suited for the given configuration. While C-type or O-type grids are ideal for
simple wings, it becomes more difficult or even impossible to treat complex geometries
with this grid types. For this reason, we decided to use an H-type grid structure which
is very flexible and can be adapted to very complex configurations by the use of inte-
rior branch cuts or by using a multi-block approach. Figure I shows the general lay-out
of the grid where the outer boundaries are a simple rectangular box.

There are two different concepts for the generation of grids around complicated
configurations. In a multi-block approach (cf. /1/, /2/, /3/) the entire flowfield is
subdivided into a number of simple blocks and the grid is generated separately in every
block. The main problem of this method is the treatment of the block boundaries. At the
present time there seems to be no automatic scheme for the subdivision of the domain,
and therefore the exact location of the block boundaries has to be evaluated in a time
consuming trial and error process. To avoid these difficulties, we decided to use a sin-
gle block grid structure. To resolve the complex configuration properly, several inte-
rior branch cuts had to be introduced. This leads to a number of singular points called
lost or fictitious corners (cf. /4/) on the surface of the configuration. Figure 2
shows the structure of the surface grid in the computational space. We can see, that in
this concept the configuration and not the whole flowfield , has to be divided into
several blocks. The computational domain is a single block from which the cells, which
lie inside the configuration, have to be excluded.
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3. SURFACE GRID GENERATION

3.1 GEOMETRY INPUT

The input requirements are as simple as possible. Since the configuration is

assumed to be symmetric about the plane y = 0, only one half is considered.

Fuselages

The fuselage is given by wire frames expressed by coordinates x, y, z for each
frame. Usually these frames are given at x - const. stations. In order to identify the
intake geometry correctly, the fuselage is divided into two parts, the forebody and the
afterbody (Figure 3). The last cross section of the forebody is partly identical to the
first section of the afterbody. The latter consists of the last section of the forebody
with the addition of the wire frame forming the intake.

Each cross-section is accompanied by two integers marking the lower and the upper
fuselage block boundary points of the section. The lower block boundary line of the
forebody ends at the last section of the forebody and should coincide there with the
corner formed by the intake frame cutting point with the identical part of the fore-
and the afterbody. The upper block boundary line should not have a jump at the common
part of the fore- and the afterbody. The lower block boundary line of the afterbody
should start at the corner of the box type intake. We decided to place the upper block
boundary line outboard of the vertical V-stabilizer. Finally the coordinateb A, Y, I of
the fuselage nose cap are given in random ordering by input. In the present case the
fuselage is pointed, and the nose cap can be prescribed by a plane of a triple of coor-
dinates, all with x = Xnose.

Lifting Surfaces:

It has proven practical to prescribe the planforms of the canard, the wing and the
stabilizer first. The airfoil inputs are simply functions z(x). Each airfoil is accom-
panied by four numbers: the desired y-station in the planform, a twist angle, a point
of rotation as fraction of cord length and an elevation Az. Then the airfoils are
adjusted to the given planform. An array of y-stations allows inserting additional air-
foils which are generated from the linear interpolation of the two neighbouring air-
foils. Finally the lifting surfaces are shifted and rotated to their final position at
the fuselage. The final input wire model is shown in Fig. 4.

3.2 LIFTING SURFACES

The present goal is to obtain an equal number of coordinates for each airfoil of a
lifting surface. Therefore a distribution of n abscissae for the lower and upper side
of the airfoils is generated the following way.

a) Fix the nosepoint abscissa xl and the trailing edge abscissa xn

b) Attract the new leading edge abscissa x2 and the near trailing edge abscissa xn-1
to the nose respectively to the trailing edge by the formulas

x2  = x, + a(x 3-x1 ) (la)

Xn- I = xn n a(xn2-xn )  
(lb)

where 'a' is a global attraction parameter (0 <a < 0.5).

c) Calculate boundary sources

P 2 = x 1 + x3 - 2x 2  (2a)

Pn-1 
=  

xn - 2xn- 1  (2b)

d) Calculate new abscissae by

xi = i(xi+ xi1P i  1 3 through n-2 (3)

e) Calculate source distribution by

i 
=  

,
( 

P-
)  

i = 3 through n-2 (4)

f) Repeat stap 2 through 5 until convergence

lXnew-Xoldlmax <

with c being a small user specified number.
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g) Interpolate airfoils at the new abscissas x; i = 2 through n-1, by a third order
polynomial.

3.3 WING-FUSELAGE INTERSECTION

There remains to find the intersection of the lifting surfaces with the fuselage
skin. Since moat of the available CAD-systems are not capable to calculate the coordi-
nates of the intersection from two pontwie defined surfaces an algorithm was included
which does this work. It is based on solving the problem of finding the point of inter-
section of a straight line with a plane spanned by three coordinate triples in space.

For this purpose the fuselage wire frame model is interconnected contiguously by
triangular finite elements (no overlaps, no gapsl). Upon that the intersection point of
the quasi spanwise grid lines at near equal percentage with each of the linear triangu-
lar finite elements is calculated. If now one of the three baricentric triangle coordi-
nates is negative, this triangle is discarded and the next one is taken for the inter-
section. Note that for each fuselage network there is only one triangle admissible for
an intersection point. Finally the spanwise airfoil stations of the lifting surfaces
are shifted by a prescribed ratio along the lines of equal percentage towards the fuse-
lage surface to make them fit better with the curvature of the latter, see Figure 5.

3.4 FUSELAGE

The goal of the surface grid generation on the fuselage is mainly to cluster coor-
dinates at the cuts formed by the intersections of the lifting surfaces with the fuse-
lage. Figure 6 clears up the geometric situation, here for the fuselage side wall.

First the coordinates are attracted to the wing cut, e.g.

2= x1  a(x3-xl) (5a)

z2 = z 1 + a(z 3-Y (5b)

where 'a' is the global attraction parameter. Upon that the source boundary condition
for the Poisson coordinate smoother is calculated, e.g.

P2 = x1 + x3 
+ 
X4 

+ 
x5 - 4x2  (6a)

R 2 = z1 + z3 + z4 + z5 - 4z2  (6b)

The Poisson solver which generates the x,z side wall projection grid is

4 + i-- i,k

i,k  4 i_1, k + i+1, k  zi,k 1  Xi,k+ -R (7b)

i(P P P p (Sa)
i,k 4 i-1,k 

+ 
i+1,k * i,k-1 + i,k+1

ik =(Rilk + Ri+1,k + Ri,k-1 + Ri,k+1) (8b)

The steps
a) attraction
b) coordinate smoothing
c) boundary source calculation
- repeated till cor-ergen -. The Poisson Operators are P.s- applied along the block
boundary lines such that the points on this lines float along them. The coordinates are
linearly interpolated from the block boundary specificaton of the fuselage input.

After the fuselage projection grids are set up, the missing coordinate is interpo-
lated from the fuselage input frames using linear triangular finite elements. At holes
in fuselage geometry such as the intake and the nozzle exit, no surface interpolation
is possible. In this case the Poisson smoother is applied on all three coordinates. It
proved to be necessary to solve the Poisson equations simultaneously on all fuselage
projection grids (bottom, ceiling, side wall, intake, nozzle) wth the freedom that the
grid points may float along the edges of the configuration, be they real edges or fic-
titious corner lines. In this particular way jumps in the curvature of the grid lines
belonging to one family are brought to a minimum. Figure 7 shows the final surface grid
with approx. 15 000 points.
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4. SPACE GRID GENERATION

4.1 GENERAL DESCRIPTION

The grid generation for the flowfield follows the same concepts which were used
for the distribution of the abscissae for the point distribution on the lifting surfa-
ces and the generation of the two-dimensional projection grids forming the walls of the
fuselage. As explained in Ref. /5/, the method is based on the solution of the bihar-
monic equation

VI; = 0, (9)

which is actually implemented as a systea of two second order partial differential
equations (Poisson type)

V = (10)

V2 = 0 (11)

where r is the position vector

and 9 is the vector of the control functions (or source terms)

=RI

After the introduction of central difference approximations for the second deriva-
tives, equation (10) and (11) can be rearranged easily to yield the final expressions
for the calculation of the coordinates r and the control functions g for a given
node (i,j,k):

1 1. 1 -+ + +ri,j, k  (ri+1,j,k  + ri,j+, k  ri,j-l,k ri,j,k 1 r i,j,k-1
Si,j,k )  (2

(13)
Si,j,k 6 i+1,j,k +i-1,j,k Si,j+1,k i,j-l,k 

+ 
9i,j,k+1 9i,j,k-1

Boundary conditions

Grid control is exercised via the boundary conditions for ; and at the inner
boundary. This is done by the attraction of points towards the surface of the configu-
ration as shown in Figure 8:

r 2 = r, 
+ 
a(r 3 -rl) (14)

with the global attraction parameter 'a'.

With the help of eq. (11), this coordinates can be used to calculate the boundary
values for the source terms at these points (cf. Fig. 8)

2 r 3 
+ 

r 4 +r 5 + r 6  + r 6r 2  (15)

At the farfield boundary, an orthogonal intersection of the gridlines is imposed
and the source strength is put to zero. At the symmetry plane, the point coordinates
and the corresponding source strengthes are calculated by using a symmetry condition
for equation (12) and (13).
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For the numerical solution of this grid generation system, a simple Gauss-Seidel

or SOR scheme can be used. Each iteration consists of the following steps:

a) Attraction of points towards the body surface (eq. 14),

b) Calculation of the new source terms at these points (eq. 15),

c) Calculation of the source terms in the flowfield (eq. 13),

d) Calculation of the point coordinates in the flowfield (eq. 12),

e) Orthogonal intersection of gridlines at the farfield boundaries.

4.2 SPECIAL REGIONS

Due to the complex structure of the configuration, several regions need a special
treatment. The resolution of the region near the wing leading edge is very important
for the accuracy of the subsequent flow calculations. For a sharp leading edge, it is
sufficient -r -i ve a ringle grid point in the nose region as shown in fig. 9a. For
wings with a blunt leading edge, this would lead to a grid with rather skewed cells in
the nose region. In this case it is better to have more lines ending on the surface as
demonstrated in fig. 9b. The same assessment is true for all similar edges on the sur-
face of an aircraft, like wing tips and wing trailing edges. The wings, canards and
stabilizers of the presented aircraft configuration have rather sharp leading and
trailing edges and therefore a grid structure similar to figure 9a was used.

Another difficult region is the pointed fuselage nose. The grid in physical space
has only one point in this region but in the computational space, there is a surface
block boundary where about 250 grid lines end (cf. fig. 2). This means that all these
lines have to end in one point (the fuselage nose) forming tetrahedral type grid cells
in this region as shown in Figure 10.

Figure 11, 12, 13 show some surfaces of the resulting grid for the advanced
fighter aircraft with approx. 500 000 points.

5. FLOWFIELD CALCULATIONS WITH BOX-TYPE H-MESHES

The grid used for the present aircraft code is in principle a single block grid
with the body being carved out. This is a philosophy which differs from multi-block
grids where after the surface specification of the configuration many blocks are fitted
to the aircraft skin. The same philosophy also is traced in the implicit Euler code
used for the flow calculations. The entire grid box is taken as a large 3D-DO-loop. The
aircraft configuration is identified by a logical array saying 'no' for each dummy cell
inside the aircraft and saying 'yes' in the cells where physical flow exists.

If a 'yes' ('no') follows a 'no' ('yes') then the code automatically sets the cha-
racteristic solid body boundary condition using the positive (negative) characteristic
field for the flow value extrapolation to the boundary. This procedure is repeated
three times, first for all i-lines, then for the j-lines and finally for the k-lines.
The dummy cells inside the aircraft are included in the calculations in order to keep
the vector lengths as long as possible. Each line algorithm is followed by the evalua-
tion of the Euler flux differences. The flow variable update is performed by an impli-
cit point Gauss-Seidel Newton type residual driver. Again the whole grid box is taken
as a large 3D-DO-loop. This time, however, the DO-loop is performed twice in steps of
two in order to avoid recursive formulae. The implicit solid body boundary condition is
entered the same way as for the Euler flux differences.

This formulation - single block grid together with a single block Euler solver -
seams to be the simplest way to treat the flow field past a complex configuration such
as the present. The whole computer program consisting of

a grid generator,

a grid geometry plot software,

an Euler flux subroutine,

an implicit residual driver,

an Euler result plot software

contains 7 000 FORTRAN statements.

A more detailed description of this algorithm and several results from flow calcu-
lations are included in Ref. /6/.
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6. CONCLUSION

The described grid generation system is a simple and reliable method for the con-
struction of grids around complex configurations. The single block concept avoids the
difficulties involved in the subdivision of the flow field into several blocks, which
is necessary for the multi-block system. This problem has been reduced to the correct
construction of a surface grid with the appropriate location of the block boundary
lines on it. The disadvantage of the single block concept is the limited grid size due
to computer storage limitations and furthermore it is not possible to introduce embed-
ded and refined subdomains. But nevertheless the resulting grids should he sufficient
for most applications, at least for Euler calculations.

Starting from the surface grid, the space grid can be generated easily by the use
of the described biharmonic grid generation system. Although it is simple to handle
because it requires only a few number of input parameters, there are some cases where
you want to exercise more influence on the grid, at least in some regions. Therefore
some kind of postprocessing would be desirable. This could include algebraic subdivi-
sion of cell layes (/6/) or even an interactive grid optimization concept (/7/).
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Figure 1: Grid Structure (Physical Space)

tIIuLe 2: Surface Grid In Computational Space
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Figure 7: Surface Grid
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Figure 10: Details of Mesh near Fuselage Nose and Intake
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Figure 11: Surface J =f const. (Symmetry Plane)
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Figure 12: Surface i = const.

Figure 13: Surface k - const.
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4.8 Algebraic Grid Generation for

Fighter Type Aircraft

by

John Steinhoff
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Tullahoma, Tennessee 87388

A systematic procedure is presented for synthesizing a complex computational grid for fighter type aircraft
out of a number of simpler 'elementary" grids. This method is useful when a grid is required over an object
which, though :omplex, consists of a number of simpler pieces, such as an aircraft with a number of lifting
su,-faces. The procedure presented allows a smooth complex grid to be generated which becomes exactly equal
to each elementary grid ah the surface corresponding to that elementary grid is approached. In this way,
methods which may have previously been developed for each piece do not have to be changed and can be used
as "black boxes,' whether they are algebraic, partial differential equation based, or whether the grids are just
given numerically. This blending technique is only one of several tools which we use to generate effective grids.
Other techniques include projection methods for generating surface grids. Some advantages and limitations of
the method are discussed and examples are given of its use in generating complex fighter grids.

I. INTRODUCTION

For many aircraft geometries, the computational domain can be decomposed into a number of pieces each
of which is fairly simple. Also, often an adequate grid can be easily generated'for each of these pieces. if
considered by itself. Our basic method involves blending these 'elementary" grids into one smooth compoite
grid. This technique can be used over an entire aircraft, where simple methods exist for generating grids
individually over each of the lifting .urfaces and the pieces of the body. An important feature of the concept
is that it can be used recursively: Composite subgrids can first be formed from elementary grids, using he
method. Then, the same method can be used to form larger composite grids out of these individual subgrids,
If algebraic methods are used to form each elementary grid, which can often be done since each piece is simple.
then the entire grid generation procedure is algebraic, since the blending is non-iter,,tive and involves no partial
differential equation solutions. Accordingly, where applicable, it is a fast method suitable for interactive use
Also, if a partial differential equation is to be solved for some physical quantity and an iterative metho'i is
used to solve a set of discrete equations on the grid, which is usually the case. then at each iteration the grid
can be quickly regenerated and there is no need to store the entire grid system. This feature can be especially
important for large three-dimensional problems. This method is very different from ocher algebraic methods.
such as those of Eiseman If1. Each elementary grid is taken to be previously determined, either by algebraic
methods, partial differential equation solution !21, or any other means, these grids can be defined over the
entire space, rather than just on surfaces as in "transfinite interpolation' schemes.

An important feature of the method is that it allows the grid designer to use software packages and
methods already developed or b-ing developed by others (which can be quite sophisticated and complex for
the elementary grids about each piece of the problem. These can be used as 'black boxes", and after each
elementary grid is generated the grid designer can blend them together. Also, after a composite, complex grid
is generated, if one of the pieces is later modified, only the single new elementary grid need be recomputed and
blended into the composite grid.

Since the method is local, and each piece only influences the grid in its vicinity, local methods of cont rolling
the grid can be formulated. This could be required, for example, if resolution were inadequate or if grid lines
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were to cross. It will be seen that advantages of the method include simplicity and speed, even for complex
geometries. Disadvantages include the lack of guarantees against line crossing (although this can be made
unlikely), possible skewness (although this can be corrected) and the requirement that each elementary grid
locally have the same topology. Also, for the three dimensional problems described here, other techniques are
required which include projection of the wing grids onto the body surface.

2. BASIC METHOD

The basic grid generation method involves the blending technique of Ref. I, described in the next section.
Generation of a grid is recursive: First, a 3-D grid is computed about the aircraft body alone (denoted G,)-
Then, an 'elementary" grid is developed in a region about the wing (denoted G.). This is then blended with
the body (G) grid to form a smooth wing-body grid (G2). As we approach the wing surface in grid G2 in
computational (i,j, k) space, the values (z, y and z) of the physical coordinates of the nodes smoothly approach
the values of the elementary grid (G,,) coordinates, and are exactly equal to them on the wing surface. As we
approach the boundary of the grid G,, in computational space, the composite (G2) grid coordinates approach
the original grid coordinates (Gl). In the wing-body junction region the elementary G. grid is projected onto
the body surface and then blended.

Other elements of the aircraft are similarly incorporated in a recursive way: the canard is first used to
generate an elementary canard grid G. This is then blended with the wing-body grid, G2, to form the wing-
body-canard grid G3. The blending is such that as we approach the canard in computational space. the grid
approaches G,. The tail is similarly incorporated by blending an elementary tail grid, G,, with G3 to form the
final grid, G4.

The basic topology is cylindrical about the body, as shown in Fig 1. In each cylinder-like surface the
lifting surfaces are mapped using special -H" grids. These H grids are singulartLy-free. A detailed study of the
accuracy of these grids for airfoils for compressible flow computations was presented in Ref 2 and found to be
comparable to conventional -0- and -C" grids.

A very important feature of our data man'- -nent is that the geometric ctata defining each element is kept
in a separate file. Each set has the same format except for the body. which is only slightly different. This has
led to considerable simplifications. For example, simple grids can easily be generated for diagnostic purposes
by incorporating only one of the elements at a time.

3. BLENDING TECHNIQUE

Consider a set of .V grids, each spanning the same computational space and approximately the sante
physical space. For simplicity, we define the computational coordinates to be just the (integer) indices of the
grids. Thus, in n dimensions we have an n component vector, r,(I)(

= 
(z, (l),y- (1), z-(I)) for n - 31

defined on each grid (labeled m) as a function of the indices I(- (i,),k) for n = 3). It is important to think
of the n components of r_ as ordinary smooth functions defined in the computational (I) space. Defining non-
negative weighting functions P"(I), the physical coordinates of the composite grid are then imply weighted
sums of those of the elementary grids:

The weighting functions are, in general, functins of all of the indices I. and are a function of how close
in computational space the point I is to tht- ,,smentary surface segments. When I approaches some surface
segment, say mi, then P,, (1) must approach I ;d .,il tte other P's must approach 0 since there we must have

r, (1) - r ..(1).

Some of the "art" of using the method resides in the determination of the functions P"'(1). Since values of
r,(l) which define smooth grids are determined separately about each elementary surface, the P'(1) do not

vt
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have to do as much work as in an interpolation method where they typically completely determine one of the

coordinates. It will be seen that very simple functions are sufficient. The main problems aise whep grids must
he blended with very different values of r in certain regions of I near an elementary surface. Then, care must
be taken that a number of derivatives of P-n(1) are 0 as I approaches the elementary surface (ml), in addition
to the value of P.n, (i) approaching 1. As more derivatives are made to go to 0, the region in I space where

r,(l) approaches r., (1) becomes larger.

We choose a distance function from point I to each segment.

A'" (max(O, i - 2T- 1))2 (max(0.j - j2i' j ))

(maz(O,k - k2", k -k))211
/ 2

where we take the segment to lie in the region

G T ; S? < < j2- km < k < k".

Each i" vanishes on segment m. We define a 'global" distance function, z'", for each segment (m) that is I
when I approaches the segment (,'" - 0) and 0 when I approaches any other segment (,"' - 0, rn' * m):

Then, we simply have

P- (1) = c-os(rz"')!.

With this definition the weighting functions approach the correct values on the segments and the first derivatives
vanish.

In two dimensions the method, as described, is applicable even if the boundary segments are cortiguous.
In three (and higher) dimensions the method is directly applicable only if the boundaries are not contiguous.

In the fighter geometry treated in this paper. sorme of the pieces (such as wing and body) are joined. In the
junction region, the surfaces of one grid (wing) have to be projected onto the surface of the other (body) before

they can be blended.

The particular type of blending region that we have for the aircraft grid involves three dimensional rect-

angles in (i, j, k) space representing the region where the new elementary grid is generated. Embedded in this
region are fiat rectangular surfaces with one of the indices (j) fixed, which correspond to the lifting surfaces.
A set of typical cross sections in (i. j) space is shown in Fig. 2. There are two types ot surface; On one,
representing the new lifting surface that we are adding into the grid, the composite grid coordinate (x, y, z)
values must approach the new elementary values. The other surfaces represent either lifting surfaces already
added to the previous grid which intersect the region of the new grid. or the outer boundaries of the elementary
grid region. On all of these surfaces, the composite grid coordinate values must approach the previous grid

values, so that previously included surfaces are not changed by the inclusion of the new surface. Thus, the new
lifting surfaces correspond to one set of coordinates (the new elementary grid) and all others correspond to the
original grid from the previous step,

4. SEQUENTIAL GRID GENERATION

The grid is generated in a sequence of steps, each of which incorporates another element of the fighter,
while keeping the same topology, as follows:

Fllil SI , -, tad Si stt',te" Crid

Js1(s1

j3(3) t--- .l- . d -,
"<' T ,k,"l- - -r - 4,<l ,( ,s ,>

, (41

( 3) ,3 ,3 3
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4.1 Body

A 'body" grid (GI) is generated which conforms to the body at k = 1 between two i values (sI(l) and

i2(1)). The entire grid is defined to lie in the region

io(l) _ i < j3(1) ; io(l) < .. j3(1) k, < k < ks(1).

We take
io(l) = jo(t) = ko(l) t.

This mapping involves defining a set of (i,j) lines which emerge from the body on constant -z surfaces, but

normal within those surfaces at angle 0, and change azimuthal angle 0 according to

where

and the weighting function
Aft 2 l -c°s~r k-i

The radial (r) coordinate of each point is a simple function of k and the initial radius at k = 1. and the axial,

or z value is chosen to approximately match the mean sweep of the wing.

4.2 Main Wing (Wing 1)

This step involves first computing an -:.mentary three dimensional grid about the main wing and then
blending it smoothly into the existing body grid (GI). The wing is assumned to be defined at -span stations-

or constant zg planes, where _, is the distance along a rotated z axis approximately aligned with the wing.
First, the Gt grid is rotated so that the wing is along the z axis. Then. G, is stretched and sheared to a new
coordinate system where the wing has a constant cross section in the root region (see Figure 3). With this
transformation, a single 2-D airfoil grid can be used in this entire region. This grid is defined in an r - y plane
using a 2-D I-grid method described in Ref. (2). This grid has been developed for accurate airfoil soiutions
and is designed to be singularity-free at the leading edge by analytically removing the singularity there. This
2-D grit is first blended into the G, grid as described below, and then projected onto the constant-k surfaces
of the rotated and stretched G, grid in the root region. The stretching and rotation are then reversed so that
the original coordinate system is restored. The wing grid is then projected and blended onto the other k -

surfaces in the root region. The exact z values obtained above are used for k = I so that the exact body shape
is retained but now with a wing-fitted coordinate system. The values of z for subsequent k values are weighted
sums of these computed. projected z values and blended z values, so that at the end of the root region, and
beyond, each 2-D wing grid surface in the final system for this step. is at constant -. This allows us to have
morc control over the wing grids away from the body. The results of these operations is the grid G 2 .

The blending is accomplished as described above and in Ref. (l.): We have our projected 'elementary'
wing grid system defined in a region of t. j. k space around the wing:

,o(L) <_ i '_ ,3L),j,(L) - ) < j 3 (L);ko (L) - k < k 3 (L)

where L = 2.3.4 denotes either the main wing. canard, tail or other surface. Each wing is defined by

Kt(L) I_ 2 it(L) ; k,(L) S k < k 2 (L)

with j - jt(L) for the lower surface and j j J(L) - 1i(L) - I for the upper surface. We let the values of r. y
(and z outside the root region) at each node in the final grid for this step (G 2 ) be a weighted sum of the r. y

_I "-

., // ; --- -. ... ... ..
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and z values at the same node for G, and the wing grid described above. This weighting becomes zero for the
wing grid (1 for G2) at the outer boundaries of the wing grid and 1 (0 for GI) at the wing surface. The result
of this blending and projection is a smooth grid containing the body and first wing. The first wing is typically
the main wing (L = 2),L = 3 corresponds to the canard and L = 4 to a tail.

4.3 Canard (Wing 2).

The generation of the elementary canard grid and blending into the main grid is done exactly as the wing
in step 2. The fact that the main grid now has a wing makes no major difference, even if it intersects the box
defining the elementary canard grid. It also makes no major difference if the canard intersects the original wing
grid box. In fact, the original wing grid box boundaries are not used after step 2. If the wing intersects the
canard box we merely have an additional constraint on the blending function: the weighting function for the
canard grid must vanish on the wing surface where the weighting function for the main grid (now G2) must
approach 1. The distance and weighting functions are structured to easily accommodate these constraints for

an arbitrary number of surfaces (see Figure 2)

4.4 Tail (Wing 3)

This step, as well as any subsequent ones involving additional surfaces, is done in the same way as above,
where all previous surfaces that intersect the new elementary grid box are taken into account and the elementary
grid weighting function made to vanish there. Again, no constraints are imposed on possible intersections of
the various elementary grid boxes.

5. RESULTS

In Figure 4 a top view of the total configuration for a typical 'generic' fighter is shown. with surface lines

of constant j (body) or k (wings) depicted. It can be seen that the first wing sections conform to the body and
gradually conform to constant z planes as the tip is approached. In Figure 5 a side view of the configuration
is presented.

The surface grid on the body (k = 1) is shown in side view in Figure 6 and the grids on shells k = 3 and
k = 5 are presented in Figures 7 and 8. The last can be seen to be near the tip of the canard. Figures 9. 10

and 11 present the same surfaces but rotated by 45 about the body axis to depict the tail region.

Figure 12 depicts an unblended ( 'elementary" I main wing grid for shell 1. This is generated independently
of any other elements, as are the canard and tail grids.

Figures 13 and 14 present top view of j = 28 and j 34 surfaces, which contain the lower surfaces of the

main wing and canard, respectively. The constrained outline of each can be seen.

Figures 15, 16 and 17 depict a front view of a content -i plan- 'hat contains the canard, wing, and
wing, tail respectively. These elements can clearly be seen.

The grid depicted in the above figures contains approximately 173.000 points. Its generation required
approximately 16 minutes on a VAX It 785 minicomputer.

A grid similar to that described above, but with bunching near the lifting surfaces was used in a potential
flow code to generate a subsonic solution. The code involved a conservative finite volume difference scheme and
an ADI solution method.

A configuration similar to the EFA was treated next. The inlet was plugged giving a smooth body surface.
The side view of the body surface grid is presented in Figures 18 and 19. The side view of shell number 16
near the wing is presented in Figure 20. Constant j-planes containing the wing (i = 26) and canard (j 32)
are presented in Figures 21 and 22, respectively. In Figure 23 a constant-i section near the nose cutting the

- 4 .4 2 .
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canard is presented. Figure 24 depicts a constant-i section near the middle and cutting the wing. In Figure 25
a similar section is shown, but near the aft section cutting both the wing and (vertical) tail. It can be seen in
this figure that the wing is low on the body and almost tangential at the junction. In spite of this, the wing
grid projection method was able to treat this case and map an adequate surface grid onto the body.

6. CONCLUSIONS

The blending method together with the projection technique appears to offer a relatively simple, fast
and economical method of generating complex grids. The method has been implemented in a computer code,
HPLANE. As yet the selection of the some indices of the elements has not been automated, but the code
is still relatively easy to use for configurations similar to the one presented. A number of configurations have
been treated including forward swept wings and cases with canards near an inlet 'shelf' such as the JAS-39.
Presently, it appears that smoothly varying canards, wings and tails can be handled by adjusting the input
data to our present code. Other features such as fillets, discontinuities in lifting surfaces and inlets require
special treatment. Although a combination of blending, projection and ordinary shearing can apparently still
be used successfully to generate good grids, these features are highly individualized and some new programming

is needed for new cases. A very importanat feature appears to be the ability to generate new grids quickly
and cheaply, so that changes can be implemented in a short amount of tins. The modularity utilized in our
method, together with the algebraic approach accounts for this. With more experience with a number of
different geometries, it may be possible to develop a single, general code for a wide range of configurations.
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4.9 Composite Grid Generation for Aircraft Configurations
with the EAGLE Code

Joe F. Thompson Lawrence E. Lijewski
Department of Aerospace Engineering U.S. Air Force Armament Laboratory
Mississippi State University Eglin AFB, FL USA
Mississippi State, KS USA

SUMMARY

A general three-dimensional grid generation code based on a composite block
structure Is discussed. The code can operate either as an algebraic generation
system or as an elliptic generation system. Provision is made for orthogonality
at boundaries and complete continuity at block interfaces. The code can operate
in two or three dimensions, or on a curved surface. The input is structured to be
user-oriented, and arbitrary block configurations can be treated.

INTRODUCTION

The construction of comp,tational fluid dynamics (CFD) codes for complicated
regions is greatly simplified by a composite block grid structure since, with the
use of a surrounding layer of points on each block, a flow code is only required
basically to operate on a rectangular computational region. The necessary corre-
spondence of points on the surrounding layers (image points) with interior points
(object points) is set up by the grid code and made available to the CFD solution
code.

The present grid code, developed for the U.S. Air Force, is a general three-
dimensional elliptic grid generation code based on the block structure. This code
allows any number of blocks to be used to fill an arbitrary three-dimensional re-
gion. Any block can be linked to any other block (or to itself), with complete (or
lesser) continuity across the block interfaces as specified by input. This code
uses an elliptic generation system with automatic evaluation of control functions
either directly from the Initial algebraic grid and then smoothed, or by interpo-
lation from the boundary point distributions. In the latter case, the arc length
and curvature contributions to the control functions are evaluated and Lnterpo-
lated separately into the field from the appropriate boundaries. The control func-
tion at each point in the field is then formed by combining the interpolated com-
ponents. This procedure allows very general regions, with widely varying boundary
curvature, to be treated.

The control functions can also be determined automatically to provide ortho-
gonality at boundaries with specified normal spacing. Here the iterative adjust-
ments in the control functions are made by increments radiated from boundary
points where orthogonality has not yet been attained. This allows the basic con-
trol function structure evalulated from the algebraic grid or from the boundary
point distributions to be retained and thus relieves the iterative process from
the need to establish this basic form of the control functions.

Alternatively, boundary orthogonality can be achieved through Neumann boundary
conditions which allow the boundary points to move over a surface spline, the
boundary point locations being located by Newton iteration on the spline to be at
the foot of normals to the adjacent field points. Provision is also made for
mirror-image reflective boundary conditions on symmetry planes.

Although written for 3D, the code can operate in a 2D mode on either a plane
or curved surface. In the case of a curved surface, the surface is splined and
the generation is done in terms of surface parametric coordinates.

The code includes an algebraic three-dimensional generation system based on
transfinite interpolation (using either Lagrange or ermite interpolation) for the
generation of an initial solution to start the iterative solution of the elliptic
generation system. This feature also allows the code to be run as an algebraic
generation system if desired. The interpolation, though defaulted to complete
transfinite interpolation from -11 boundaries, can be restricted by input to any
combination of directions or lesser degrees of interpolation, and the form
(Lagrange, Hermite, or incomplete Hermite) can be different in different direc-
tions or in different blocks. The blending functions can be linear or, more ap-
propriately, based on interpolated arc length from the boundary point distribu-
tions.

The composite structure is Such that completely general configurations can be
treated, the arrangement of the sub-reglons being specified by input, without
modification of the code. The input is user-oriented and designed for brevity and
easy recognition. For example, the establishment cf ,,urresponoence, i.e., a branch
cut, between two blocks requires only the simple input statement
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$INPUT ITE4 "CUT", START - , , END - BLOO( 
ISTART - . IEND - , ,,-IBLOaC - -

where START and END give the three indices of two opposite corners of the cut
section on one block (BLOCK), while ISTART and IEND give the corners of the
corresponding section on the other block (IBLOix). The code sets up the point
correspondence on the surrounding layers for complete continuity without
additional input instructions.

The features of this code and its use are discussed in Ref. 1. Detailed dis-
cussion of both the use and the operation of the code is given in Ref. 2, and some
examples of applications have appeared in Ref. 3 and Ref. 4. The setup of general
multi-blnoked - ;n.igurations is treated In Ref. 5.

The code is written in modular form so that components can be readily e-
placed, and 6 an adaptive version of the elliptic generation subroutine has also
been written. The code is vectorized (CRAY-XMP) wherever practical and includes
provision for separate storage of each block on the CRAY solid-state disk (or con-
ventional disk) to allow very large grids to be generated.

CODE STRUCTURE

Composite Grid Structure

The grid is structured as follows: The entire three-dimensional physical re-
gion is filled with a set of interfacing hexahedrons, each of which corresponds to
a rectangular computational block. Each of thse computational blocks has its own
set of right-handed curvilinear coordinates, E (I - 1,2,3): (independent of those
in the other blocks):

Each block is identified by a number (starting with 1), and the size (the number
of grid points in each curvilinear direction) of a block is set in the integer ar-
ray

CMAX(i, block number) I - 1,2,3

The curvilinear coordinates of the grid points in the block thus assume the integ-
er values

& - 1,2 .. AX(i,block number) I - 1,2.3

at the grid points in this computational block. The blocks do not have to be all
of the same size, and the size of each is specified by input. It is also not ne-cessary for an entire side of one block to correspond to an entire side of an ad-
jacent block. It is only necessary that all of the corresponding blocks fit to-
gether to fill the physical region.

Each computational block is surrounded by an extra layer of points in order toallow connections across the interfaces in the physical region to be formed. All
arrays that contain values for each grid point in a block are therefore dimen-
sion.ed from 0 to one greater than the maximum number of points allowed in the
block. Thus the surrounding layer of points outside the block corresponds to

C
1 

- 0 on one side of the block and to Ci - CMAX(i, block number)+1 on the other:

L---------

(Actually, provision is made for still another surroundirg layer of points,

corresponding to & - -1 and &I . CMAX+2, in order to provide connections for use
in flow codes using two-point one-sided differences.)

Block Interfaces

The grid can be generated such that the grid lines cross the interface from
one block to the next with complete continuity, with slope continuity, with only
line continuity or discontinuously. With any degree of continuity, i.e., in all
but the last case, adjacent blocks must, of course, have the same number of points
on their common interface.

Tn the case of complete continuity, the interface is a branch cut, and the
code establishes a correspondence across the interface using the surrouning lay-,
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of points outside the blocks. This allows points on the interface to be treated
ust as all other points, so that there is no loss of continuity. The physical
location of the interface is thus totally unspecified in this case, being deter-
mined by the code.

The case of slope continuity is accomplished simply by requiring the grid
lines to intersect the interface orthogonally on both sides. This can be done
either through Neumann boundary conditions, in which case point locations on the
interface are determined by the code (with the shape of the interface specified by
input), or by iterative adjustment of the control functions with the points on the
interface specified by input.

Line continuity requires only that the same physical points be specified on
the interface on each of the two blocks it Joins, so that the points on the inter-
face are completely specified by input. No continuity at the interface requires
nothing at all, of course, and the adjacent blocks do cot even have to have the
same number of points on the interface in that case.

Sub-Block Structure

Blocks can be divided into sub-blocks for the purpose of generation of the
algebraic grid and the control functions. Here point distributions on the sides
of the sub-blocks can either be specified or generated by transfinite interpola-
tion from the edges of the side. This allows additional control over the grid in
general configurations and is particularly useful in cases where point distribu-
tions need to be specified in the interior of a block, or to prevent grid overlap
highly curved regions.

Fundamental Arrays

In the following discussion the field arrays (which contain values at each
grid point in a block), such as R given below, include the block number as a sub-
script. The code actually operates with data from only one block at a time in
these arrays and hence this subscript is always unity in the code. The present
explanation of usage is greatly simplified by the inclusion of the block number as
a subscript, however.

The three Cartesian coordinates (I - 1,2,3) of the grid points in a block
are in the real array

R(1, block number, C . 2, E3) i - 1,2,3

where (&1 &2. E3) are the three curvilinear coordinates of the grid point in the
computational block.

Each grid point in a block is given a classification set in the array

TYPE(block number, &, &2, &3 )

This array, which is set up by the input, contains at each grid point one of the
following alphanumeric values (the default is "FIELD" except on the surrounding
layer where the default is "OUT")

TYPE - "Fil": indicates a point for which the Cartesian coordinates are not to
be changed, e.g., a fixed point on a physical boundary.

TYPE - "FIELD": indicates a grid point for which the Cartesian coordinates are
to be calculated by the grid generation system, e.g., a general
interior point.

TYPE - "IMAGE": indicates an Image point, i.e., a point on a block boundary or
surrounding layer of points, for which the Cartesian coordinates
will be kept equal to those at another (object) point in the
same or another block.

TYPE - "REFLECT": indicates a point on the surrounding layer which is the
mirror-image reflection in a plane physical boundary of a grid
point just inside the boundary.

TYPE - "AVERAGE": indicates a special grid point on a block boundary which is
the average of all the adjacent grid points.

TYPE - "NEUMANN: indicates a grid point on a boundary at which the grid lines
are to be orthogonal to the boundary by the application of
Neumann boundary conditions. (Such a point moves along the
boundary.)

TYPE - "ORTHOC.": indicates a grid point on a boundary at which grid lines are to
be made orthogonal to the boundary by iterative adjustment of
the control iunctions. (This leaves the boundary point fixed.)
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TYPE - "OUT": indicates a point completely out of the computation, e.g., inside
a body in the interior of a block.

The correspondence across the interfaces between the hexahedron in the physi-
cal region is established in the inreer array

IMAGE(-, block number, E 1 2, 3)

where the first subscript assumes the values 0,1,2,3 as explained below. The
Cartesian coordinates of points having TYPE - "IMAGE" (an image point) are kept
equal to those of some other (object) point in the same or another block. The

biock number and curvilinear coordinates (1i) of this object point are in the ar-
ray IMAGE, -here

image point

block number IMACE(0. block number, 1 2, C3)

object C - IMAGE(O, block numier, 1 I2,C3)

point 2 = IMAGE(2, block number,
3  

IMAGE(3, block number, ,

Here the last four arguments of the array identify the image point, while the four

values of the array identify the corresponding object point. This array is set up

by the code. As an example of the function of the IMAGE array, if

TYPE(IB,IC1 ,IC2,1C3) - "IMAGE", then the point with t -IC, 
2
-IC2, t

3
-IC3 in

block IB is an image point. The corresponding object point, say (2-CI, C
2
-C2,

(
3
-C3 in block B, is obtained from the IMAGE array as

B - IMAGE(O,IB,IC1,IC2.1C3)
Ci - IMAGE(1,IB.IC1,IC2,1IC)
(2 - IMAGE(2.IB,IC?,IC2,1C3)
C3 I IMAGE(3,iB,ICI,IC2,IC3)

Then the Cartesian coordinates at the image point are set equal to those at the
object point by

R(IIB,IC1,IC2,1C3) R(1,BCl,C2,C3)
R(2,IB,IC1,IC2,IC3) - R(2,B,C1,C2,C3)
R(3.IB,IC1,IC2,IC3) - R(3,B,CI,C2,C3)

Block Storage

The code is set up to treat one block at a time, and hence the subroutines op-
erate with only a single block in the field arrays. The blocks are stored either
on disk files, one block to a file, or in the core storage arrays. The code keeps
the number of the block presently in core and only accesses the storage when the
next block to be treated is different from the last. All the field arrays are in
one-dimensional form.

ALGEBRAIC GENERATION SYSTEM

Values of the Cartesian coordinates for grid points on any section of a block
can be interpolated from already-specified values on the section boundary by
transfinite interpolation . This interpolation can be used to set points on
boundaries for which the actual shape is not important, e.g. remote boundaries at
'infinity', or to set point distributions on interfaces between the blocks in the
physical region for calculation of the control functions. This same type of in-
terpolation is used by the code to generate an algebraic grid within each block,
either as a final grid or to start the iteration for the elliptic system. In this
case the section is the entire block.

Interpolation Type

The interpolation can-be from the sides, edges, or corners of a section of
block, correspondir to ti.e portion of the section boundary to be matched by the
transfinite interpolation. Cartesian coordinate values for all points on the sec-
tion boundaries that are to be matched mist have been set, of course. It is also
possible to restrict the interpolation to less than the full dimensionadity of the
section.

The interpolation may be either Lagrange or Hermite, individually in each
direction. For the ermite case, the slope is made orthogonal to the boundary
with a spacing determined either through specification, or througf Lagrange trans-
finite interpolation from the point distribution on the section sides:
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Finally, the blending functions for the interpolation can be linear or can be
based on an interpolated are length distribution constructed from the point dis-
tribution on the section boundary, also as in the above figure.

Interpolation Projectors

The tr~nsfinite interpolation is done by the appropriate combination of 1D
projectors for the type of interpolation specified. (Each projector is simply
the 1D interpolation in the direction indicated.) For interpolation from all sides
of the section, If all three directions are Indicated and the section is a volume,
this interpolation is from all six sides, and the combination of projectors is

F1 - F2 * F3 - FIF2 - F2 F3 - P3 P1 + FIF 2 F3

while if only the two directions j and k are indicated, or if the section is a
surface on which I is constant, the interpolation is from the four sides on which

either &J or Ek is constant

Fj Fk - Fj- k  (i,j,k) cyclic

With only a single direction i indicated, or if the section is a line on which

varies, the interpolation is between the two sides on which Fi is constant:0
using only the single projector Fi.

With interpolation from the edges of the section, with all three directions
indicated and the section a volume, the interpolation is from all twelve edges:

using the combination

FIF 2 . F2 F3 * F3 F, - 2F1 F2 F3

With only the two directions i and j indicated, the interpolation is from the
eight edges on which either or J vary:

with the combination
(i,kt)FkFt + FI - F1 F2F3 (jmn yclic
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With only the single direction I indicated, the interpolation is from the four
edges on which i varies:

using only FjFk ' (i,j,k) cyclic.

Interpolation from the eight corners of the section

is done using FIF 2 F3 .

ELLIPTIC GEIEATION SYSTIE

The code can function as either an elliptic generation system or an algebraic
generation system. An algebraic grid Is generated in any case to serve as a
starting solution for the iterative solution of the elliptic system.

Elliptic System

The elliptic grid generation system
8

'
9 

is

3 3 mn 3
gm n g n n - (1)

m=1
, 

n-1 4n n1 -

where the g mn are the elements of the contravariant metric tensor:

g C . ,
n

These elements are more conveniently expressed in terms of the elements of tvae co-
variant retrip tensor, g.:

gm m " rn

which can be calculated directly. Thus

gm (gikgj - gigjk) / g

(m, ,j) cyclic, (n,k,t) cyclic

where g, the square of the Jaclbian, is given by

g = det -gm I • (r & 2 x r 3)

In these relations, C is the Cartesian position vector of a grid point

(C - ix - ly - 4z), and the tj (-1,2,3) are the three curvilinear coordinates.

The Pn are the 'control functions' which serve to control the spacing and orienta-

tion of the grid lines in the field.

The first and second coordinate derivatives are normally calculated using
second-order central differences. Provision is also made, howeve, for one-sided
differences dependent on the sign of the control function Pn (backward .3r Pn 

< 
0

and forward for Pn > 0). This feature is useful only to enhance convergence with
very strong control functions. Provision Is also made for skewed cross-
derivatives, but this has been of little use.

The elliptic generation system is solved by point SOR iteration using a field

of locally-optimum acceleration parameters. 10 These optimum parameters make the
solution robust and capable of convergence with strong control functions.
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Control Functions from Algebraic Grid

The three components of the elliptic grid generation system, Eq. (1), provide
a set of three equations, that caun be solved simuitaneously at each point for the
three control functions. P (n-1,2,3), with the derivatives here represented '.y
central differences. ThFs produces conLrol functions which will reproduce the
algebraic grid from the elliptic system solution in a single iteration, -f course.
Thus evaluation of the control functions in this manner would be of trivial inter-
est except that in the code these control functions are smoothed before being used
In the elliptic generation system. This smoothing is done by replacing the con-
trol function at each point with the average of the four neighbors in the two cur-
vilinear directions (one in 2D) other than that of the function. Thus PI Is
smoothed in the and k directions, where i,j,k are cyclic. No smoothing is

done in the direction of the function because to do so would smooth the spacing
distribution.

The code generates an algebraic grid by transfinite interpolation from the
boundary point distribution, as discussed above, to serve as the starting solutlh.
for the SOR iteration for the elliptic system. With the boundary point distribu-
tion set from the hyperbolic sine or tangent functions, which have been shown to

give reduced truncation error 1 -12, this algebraic grid has a good spacing distri-
bution but may have slope breaks propcgated from corners into the field. The use
of smoothed control functions evaluated from t4e algebraic grid produces a smooth
grid that retains essentially the spacing of the algebraic grid.

Control Functions from Bouniary Point Distributions

Control functions can be evaluated on the boundaries using the specified
boundary point distribution in the generation system, with certain necessary as-
sumptions (orthogonality at the boundary) to eliminate sore teras, and then can be

interpolated from the boundaries into the field. Earlier approachec
13  

interpo-
lated the entire control functions from the boundaries in this manner. Mre gen-
eral regions can, however, be treated by interpolating elements of the control
functions separately. (Some related work along these lines has appeared in Pef.
W4).

The control functions on a line on which n varies 'san be expressed as

-1.A (2)n An Pn

where An is the logarithmic derivative of the arc length, sn  is the arc length

spacing, ^,nd pn is the radius of curvature of the surface on which n is constant.

The arc length spacing, sn , and the arc length contribution, A., to the

control function are interpolated into the interior of the block frai the four
sides on which they are known by two-dimensional transfinite interpolation using
linear blending functions:

7he radius Of curvature, Pn' Is interpolated into the interior from the two sides
On which it is known by one-dimensional interpolation using blending functions Onth-, nyperholAc sine,

F6 P
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he control function is finally formed by adding the arc length spacing divided by
the radius of curvature to the are length contribution according to Eq. (2)
(This procedure is discussed In more detail in Ref. 9.)

Iterative Adjustment of Control Functions

A second-order elliptic generation system allows either the point locations on
the boundary or the coordinate line slope at the boundary to bv apacifid, but riot
both. It is poasible, however, to iteratively adjust the control functions in the
generatlon system until not only a specified line slope but also the spacing of
the first coordinate surface off the boundary is achiev". with the point loca-
tions on the boundary specified. In previous applications the relations have
been applied on the boundary, and the control function increments generated at the
boundary have been interpolated into the field. In t',e present code. these rela-
tions are applied on each successive coordinate surface off the boundary, with the

off-surface spacing determined by a hyperbolic sine distribution
1

1-12 from the
spacing specified at the boundary. The control function increments are attenuated
away from the boundary, and contributions are acousulated from all orthogonal
boundary sections. Since the Iterative adjustment of the control functions is a
feedback loop, it is necessary to limit the acceleration parameters for stability.
(More detail is given in Ref. 9.)

BOUNDARY CODE

An auxilliary front-end code
1 6 

has also been written to sat up boundary data
for input to the grid code. This auxilliary code builds boundary segments in re-
sponse to a series of input commands which again are designed to be ,%er-orented,
brief, and easily recognized. The following features are included:

1). generation of generic plane oonic-section or cubic curves.
2). generation of cubic space curves.
3). generation of generic conic-section surfaces.
4). generation of cubic surfaces.
5). generation of surfaces by stacking, rotating, or blending curves.
6). extraction and concatenation of surface segments.
7). transformation of surfaces by translation, rotation, and scaling.
8). reversal or switching of point progressions on surface.
9). establishment of point distributions by curvature and with specified end,

or interior, spacings.
(10). establishment of surface parametric grids by transfinitc interpolstion.
(11). generation of tensor-product surfaces.
(12). generation of surfaces by transfinite interpolation.
(13). generation of grids on curved surfaces.

APPLICATIONS

In general the following details have been found to be advantageous. Dring
the iteration, cuts on block sides are updated immediately after the block has
been swept, since updating all of the cuts together after all of the blocks are
swept can lead to oscillations near the cut. The SOR iteration is implemanted in
a symmetric manner, reversing the sweep direct-n after each iteration since this
gives better symmetry, particularly with Neumann boundary conditions. The optimum
acceleration parameters are essential to making the system robust. When the con-
trol functions are iteratively adjusted for boundary orthogonality, the use of
one-sided, directed first derivatives is porprtiate since the changes in the con-
trol functions can initially be quite large. Central differences are used in all
other cases. The skewed cross derivatives, however, have shown little value.
Finally, the evaluation of the control functions from the algebraic grid, followed
by smoothing, has proved to be the most generally applicable approach, particular-
ly in complicated configurations. Some examples appear below from Ref. 5:

The following figure shows a 27-block structure for a pylon-store, constructedso as to transition from an 0-type grid on the store to a rectangular macro-block
that can be inserted into a C-grid about a wing.
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The next figure shows an exploded view of the physical region:

Finally, a cut-away section of the grid Is shown:

The insertion of this macro-block in the overall wing-body In the overall
wing-body grid is indicated in the next figure:

---------
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Finally, soe surfaces from the resulting comp~osite grid are shown:

The following figure shows the block structure for a 12-block System about a
wing-cornered store:

and a section of the grid follows next:

Finally, a 21-block structure for one of a pair of stores is shown (the bottom
line Is the symmnetry plane):
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followed by a section of the grid:
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4.10 ANALYTICAL SURFACES AND GRIDS

Helmut Sobieczky
DFVLR Institute f. Theoretical Fluid Mechanics

Gottingen, F. R. Germany

Summary

The use of analytical shape generation is decribed for wing-body configurations
and flow boundary conditions. Flexibility in geometry definition allows for sim-
ple computational grid interpolation. A test case for experiment and code vali-
dation is illustrated.

Introduction

The use of computers has become essential for an efficient development of
research tools in fluid dynamics. Large computers are needed to solve equations
modelling fluid motion, smaller computers create graphic display of calculated
physical phenomena. Flow field discretization is necessary for numerical sol-
ution methods: Model equations are solved within discretized portions of space
surrounding the flow boundaries. Numerical flow solver techniques of various
complexity - depending on the degree of simplifying the equations of motion -
need computational grids of different properties defining resolution of space.
Many grid types for flows past wings and bodies have been developed, the quality
of flow solvers for practical applications is already measured by an ability to
work with relatively simple grids formed around configurations of increasing
complexity. Grid generation has therefore become a large part of the whole compu-
tational effort to model flows: equations and iteration techniques are used to
find grid coordinates similarly as the subsequent effort needs to find the prop-
erties of the flow.

It has been found that the economics of grid generation is very much dependent of
an ability to control surface metrics. Usually the surface is given by a more or
less complete set of coordinates data providing supports for spline interpo-
lation to obtain a surface grid. A much more precise definition of surfaces is
possible if the shapes may - piecewise - be described by analytical relations. A
modelling of a given configuration by analytical relations is of course tedious,
but in design aerodynamics data generation with such methods is highly welcome
because of the value of parametric studies.

We have developed a surface generator originally for wings designed for opera-
tion in transonic flow, stimulated by the sensitivity of the flow past given
geometries to variations in transonic Mach number and lift. The design of air-
craft primarily requires wing design concepts but we see that the fuselage and
the wing-body junction influence the properties of a wing substantially.

It is intended here to show that, at least for the purpose of developing aero-
dynamic analysis codes and design concepts, surface generation is the most
important part of grid generation and an analytical approach seems most useful
for many applications, especially if workstations may be used for rapid interac-
tive design and analysis. A strong connection to practical CAD/CAM and to exper-
iment may also be established as will be illustrated here for a simple test wing
configuration.

Development of a geometry generator

The beginnings of various users' geometry software were a necessity to define
boundary conditions for their problem case studies. We recall the time when com-
putational methods, e.g. for fluid mechanics, had to be tested with academic
examples like the parabol.c are airfoil, the circle or sphere and ellipsoid, or
similar. These examples are not too simple for practical flow studies, quite the
contrazy they include phenomena very difficult to model, but sometimes these
phenomena are not relevant for practical cases, or they are not scaled properly
compared to the tobology of the flow past a mo-e practical configuration. We -
like oLhers - had to solve therefore the problem how to define test cases for CFD
as easy as defining a circle or an NACA 0012 airfoil but with intended local com-
plexities to enforce occurrence of some aerodynamic phenomenon. The same
approach should be of practical use to the designer in industry - at least there
should be a straightforward way to extend software to practical tools. Presently
we have a quite flexible family of codes able to generate a wide variety of
wing-body configurations (Ref.1). To arrive there and continue toward complete
aircraft we need a mathematical, an aerodynamic and an engineering background.
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Mathematical relations

There are some very simple relations describing analytical functions connecting
two given points in space. We may use algebraic and other analytical functions
depending on additional quality requirements like tangents and curvature pre-
scribed at the end points, or instead of smooth curvature some weakly singular
behavior (Fig. 1). An exponential growth rate of the function may be of use as
well as the simple parametric definition of parts of a circle by trigonometric
relations. Another technique to generate discrete distributions, like grid
points between given boundaries, makes use of a vector direction blending, based
on the abovementioned functions used for distributions, clustering and con-
nections. These explicit analytical basic tools are, of course, fast and simple
which should be quite useful for large overall iteLation loops, taking into
account the whole design or analysis strategy.

Aerodynamic knowledge

Wings, bodies and their combinations for aerodynamic design, especially in the
high speed regime may successfully use some geometry software package but for
refined investigations - and these are what's needed by an already experienced
community of design engineers - a flexibility to influence shapes, their gradi-
ents and their curvatures locally is essential: shape smoothness is necessary
but not sufficient e.g. in transonic design where curvatures of wing upper sur-
faces need to be carefully balanced according to Mach waves of the flow field in
two or three dimensions (Ref. 2). Computational grids should also be dense in
regions of high or singular curvature, or where shocks are expected to occur.

Airfoil sections traditionally form a basic element of wing definition; our
geometry code allows for given airfoil input data. We blow the sections up to
give shapes with softened curvature peak at the leading edge, then we use a
spline redistribution to uniformize point number and clustering of all sections
serving as supports for a wing. The other possibility of a totally analytical
geometry is to define airfoil generation by characteristic parameters, but their
number might get too large for achieving desirable pressure distributions.
Direct and inverse design methods, on the other hand, are available for transonic
flow so that a resulting optimal 2D airfoil should be taken as a set of input
data.

Less experience exists with optimal planforms and wing-body junctions so that
our effort to generate these shapes analytically is intended to provide a multi-
plicity of variations for optimization strategies. A first application of com-
bining this geometry generator with a fast transonic analysis code to find
optimal wings is described in Ref. 3.

Engineering requirements and code practicability

The resulting shapes, though analytical and of arbitrary data density include
realistic basic shapes with simple straight, uniformely rounded or other ele-
ments which allow a comparison with known case studies as well as they include
simplifications dictated by engineering constraints.

Input for the generator code has been developed to control a selection of func-
tion parameters: besides coordinates these parameters include tangents and cur-
vature or singularity exponents, controlled by a curve key and function
identifier. The key identifies the parameters supporting a special curve like a
leading edge shape or a body crown line, the function identifier selects a cer-
tain function formula to model a portion of the special curve. The resulting set
of data for all definition curves in 3D space is useful for interactive work on a
graphic work station: Axonometric or perspectivic views and selection of grid
portions allows for high productivity because of the extremely fast explicit
computation.

For wind tunnel model production the surface normals are used with a given tool
radius to define the cutter path for NC milling (Fig. 2). Surface undercuts at
concave portions are monitored, so the maximum tool radius for smoothest sur-
faces at the different milling steps is found.

Surface generation

Some elements combined to form a configuration are of prime importance and so we
focused our efforts to generate fuselages, wings, flow wake sheets and flow field
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boundaries including internal flow in nozzles and diffusors. A generalization
of superelliptic quarter arcs gives smooth cross sections, with curvature singu-
lar, finite or vanishing, depending on the exponents used. Restrictions to shape
complexity led to adding an ability to define basically rectangular cross sec-
tions with rounded corners. These cross sections - defined by half axes and
corner radii - are thread onto a curve in space, given by x,y,z as functions of
its arc loength. Function subroutines provide first and second derivatives, so
the normal plane to a curve in 3D space can easily be given. These shapes are
applied to generate fuselages and channels (Fig.3).

Coordinates of a body surface grid may be defined now in various ways but most
useful sceems an explicit definition of the spanwise coordinate as function of
streamwise and vertical coordinate: we use this for smoothly fix the wing root
onto the body.

Wing parameters require a definition of selected spanwise section stations,
leading and trailing edge shape, dihedral, twist axis, twist distribution, air-,
foil thickness variation and parameters to blend-interpolate the given support
airfoils between their spanwise locations. We presently treat the fairing of a
wing root, or the fillet, like airfoil sections. An isolated wing with a fillet
opens therefore like a trumpet at its root (Fig. 4). Wing sections are thread
onto a 3D twist axis allowing for applying section angle of attack and a vertical
bending of the wing. The wing root area may now be projected toward the body so

that no gaps are left between body and wing. If wing fillets are provided we may
form a comrletely smooth winq-body junction.

Many present flow analysis computer codes require a suitable choice of a computa-
tional wake sheet, possibly adjusted to the flow wake iteratively. We have there-
fore provided parameters to continue the wing sections beyond the trailing edge,
downstream toward an exit plane. Vortex roll up at the tip and near the body may
be modeled. Finite trailing edge thickness results in two parallel sheets suit-
able for inserting a fine additional grid block essential to model viscous flow
from a blunt base downstream. The wake of the root section is projected toward
the body surface, allowing to interpolate a simple C-type body surface grid
between upper and lower crown lines and the wing root section plus wake. Body and
wing have now one type surface metrics with sections from the plane of symmetry
to the wing tip (Fig. 5).

Similar to wake sheets we treat far field boundaries like body geometries. Among
the many possible grid topologies we had priorities for CO-type 3D grids for our
analysis codes. So we generate a body with round nose and C-type spanwise sec-
tions. CO grids allow for a refined wing tip analysis, the tip far field C section
is reduced to a cut in the rounded side. CH grids need a wing tip extension and an
open far field. Both types of grids are generated automatically by the grid
interpolation routine (Fig. 6).

Grid interpolation

In this paper we stress the importance to achieve a maximum flexibility in gener-
sting surface grids (including wake and far field) as the best prerequisite to
define mesh distributions in space. With bounding surfaces given, an interpo-
lation may be carried out in many ways depending on configuration complexity.
Many authors use partial differential equations. We have provided surface grids
to serve as boundary conditions for elliptic grid generators, e.g. to obtain a
grid in a channel. Here we restrict a description of our experience to grid
interpolation by analytical methods, added as a subprogram to the surface gener-
ator.

A simple vector combination technique is used in this ,ode, it requires start and
end point in space, a starting direction and a clustering function for the
interpolated points. The problem of intersecting grid lines in relatively easily
controlled and avoided for the configurations studied. A recent addition con-
firms this easy control: We place the "far field" boundary relatively close to
the body, with sections and points distributed so that surface normals pass end
points of the interpolated grid close enough to avoid too strong turns and inter-
sections. This boundary has turned to a near- or midfield boundary; from there
starting with end point directions, grid trajectories may continue to a new real
far field boundary, far away in free stream and with coarse mesh near this outer
surface (Fig. 7).
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This continuation may also be used to change from a C- to an H-type grid for flow
analysis codes handling block-structured grids. An application is the grid
around a wing or wing-body combination in a rectangular channel, where the
near-field C type boundary is surrounded by an H type block conforming with the
channel walls and also allowing a grid clustering at the walls for modelling vis-
cous flow or ventilation at wind tunnel walls.

An Application: DFVLR-F5 Configuration

In our effort to improve numerical methods in CFD, precisely defined test cases
are needed. The geometry generator developed here offers many possibilities to
provide configurations for such purpose. A first example was cbosen carefully
between two extremes: Creating the model of only a "bump" body forming some 3D
displacement in the flow certainly already allows for complicated viscous flow
phenomena experiments, their physical interpretation and computational verifi-
cation. Designing a realistic wing-body configuration with a superclitical
lifting wing, on the other hand, is already possible with this gener-'to" using
present aerodynamic experience. The goal was the compromise of trying to define a
"clean experiment", avoiding uncertainties of wind tunnel corrections but still
obtaining data related to typical measurements on swept wing configurations for
transport aircraft. Using half model technology in a lx1 m transonic tunnel
allowed for a larger wing but required a careful flow control at the splittetl
plate leading edge, to avoid the thick boundary layer on one of the tuannel wall:I.
The slotted walls were completely closed, just suction in the Lplitter plate
bypass channel was provided - among other devices - for controlling the plate
leading edge flow (Fig. 8).

The configuration presented as a test case is a non-lifting wing with pronounced
fairing on the splitter plate wall. The surface generator provided dita fol NC
milling of the model. Gecmetry accuracy achieved by this approach was remaikably
high, confirming the possibility to use the code for model production.

Airfoil design and wing geometry definition, model production and the wind tkun-
nel experiment were the first part of the DFVLR-F5 project. The second part is a
data evaluation and offering geometry and flow boundary conditions from the
experiment (Ref. 4) to interested partners in the CFD community, followed by a
workshop to compare computational results. The test case lends itself to the
development of various computational analysis codes, these will use grids with
different topology. Measured flow data (pressure, temperature and velocity com-
ponents) were modeled analytically to a reasonable accuracy defining flow
quantities on any chosen computational grid in inlet and exit planes (Fig. 9).
Accepting these boundary conditions as good models for measured values, we have
completed a precise geometry input by an equally precise flow boundary.

Our own efforts to improve potential, Euler and boundary layer codes as well as
develop new solvers for the Reynolds averaged Navier Stokes equations add to
experience how to choose grid topology, density and clustering. Potential flow
results give a first insight into flow quality at wing root and tip, N/S analysis
of 2D airfoil flow past the swept wing section gives information about required
grid quality subsequently applied to a 3D version of the N/S code in free stream
and in channel flow (Fig. 10). The goal is finally to learn about a most economic
use of all codes in global and zonal approaches: all of them require rapid and
flexible handling of geometrical problems.

Further use of this wing is, in combination with a generic body, the development
of design and optimization strategies: studying the reaction of flow quality to
the changes in geometry by a systematic variation of certain parameters leads to
a better understanding of flow sensitivity and consequently to better tools for
design aerodynamics.

Concluding remarks

The use of analytical geometry and grid generation was illustrated by definition
of wing-fuselage and other configurations. Flexibility in shape definition and
surface metrics generation includes a large part of the work necessary for
obtaining acceptable computational grids. The fast solution of explicit analyt-
ical relations invites to the interactive design of geometries and grids on a
graphic work station. A generated example was used to precisely define a tran-
sonic flow experiment for analysis codes development.

mmmm • m mm mni mm m
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4.1 1 Mesh Generation for Industrial Application of
Euler and Navler Stokes Solvers.

W. Fritz. W. Hasae. W. Seibert
Oornier GmbH. Theoretical Aerodynamics. Fr.jdrichshaten, F. R. Germany

1. Introduction

In recent years, there has been a considerable increase in the ability to comi..s flow fic.i& about thrc-.mmuensonal configurations.
The level of itie field equations which could be considered has increased from the small disturbance potential methods in the early
severiies over full potential and Euler methods to Navier-Stokes methods. The complexity of the geometry which could be con-
sidered has also increased from isolated wings over wing-fuselage representations to wing-body-tail geometries and more nearly
to complete aircraft geometries. Because of the great generality of the most commonly used finite volume technique the flow field
around any configuration can be solved if it is possible to map the configuration and the surrounding field into the rectangular
computational space. This mapping is done by the grid generation in the physical space.

Already in 1974 Thompson, Thames and Mastin (I] described a method whereby a grid could be generated around an arbitrary
two-dimensional body. This technique which involves the solution of non-linear elliptic partial differential equations for the grid
points, readily generalises to three dimensions, and in principle, provides the means of grid generation for complex shapes. Me-
anwhile this technique is well known as the 'Standard Thompson Approach' and is the basis of most of the grid generation
techniques. In the past ten years or so. grid generation has been of secondary importance, but the fact remains, that for the flow
solvers to reach their full potential, robust grid generation techniques for complicated aerodynamic configurations must be devel-

oped.

To this end we present 3 difftent methods which can be characterized as automatic grid generation for complete aircraft config-
urations, completely interactive grid generation and generation of solution adaptive grids for Navier Stokes calculations.

2. Block Structured Grid Generation around Complete Aircraft Configurations

The block structured grid generation technique as it is given for example in the references [2], [3] or [4] divides the computational
domain into multiple rectangular blocks, which can be defined arbitrarily to produce surface-fitted grids whose structure follows
the natural lines of the configuration. The Figure I shows in principle such a block structuring of the grid around an aircraft.
Such a subdivision of the physical space, when properly carried out, can adapt to complex configurations with multi-components
in such a way as to reduce grid skewness near the boundaries and provide good grid behaviour around the surface slope discon-
tinuities. It undergoes also the storage restrictions of existing computers for fine 3-D grids because during the grid generation as
well as during the flow solution, only part of the complete 3-D field has must be present in the main storage

The typical block-structured grid generation process can be described as follows:

0 Definition of the overall block structure according to the natural lines of the configuration. (Definition of the block corner
points).

* One-dimensional block perimeter discretization. (Connection of the block comer points). This can be donc in the simpliest
way, connecting the block corner points by straight lines and taking an evenly spaced point distribution along those lines.
But such a perimeter discretization can produce large discontinuities in the spacing and in the slope of the coordinate lines
accross the block boundaries. The presented method makes large efforts to get smooth perimeter lines accross the block
boundaries.

* Two-dimensional grid generation for each block surface. Such block surfaces can be pysical surfaces (fuslage. wing etc.). free
surfaces and far field surfaces which are bounded by the block perimeter lines. This block surface discretiation can he done
either by algebraic interpolation or by the solution of an elliptical PDE.

0 Three-dimensional grid generation for each block. A block here is a subdomain of the 3-D grid, bounded b, the block
surfaces. This also can be done in 3 levels:

-Algebraic interpolation.
-Section wise solution of a 2-D PDE.
-Solution of a 3-D PDE

where each level can be the initial solution for the next level.

The partial differential equations which are solved for 2-D and 3-D grid optimization are derived from the Poisson equation of
the form:

C.. + 4yy + t"4z (*

IF"s + "cc + fiz Ql.t-

C'. + CV + ,. = (

where (,Q) are the computational, and (x~y,z) the physical coordinates. P. Q and R are source terms which control the interior
grid spacing. The above equations can be transformed to the computational coordinates (4^,) by interchanging the role of de-
pendent and undepezsdent variables. This leads to a quasi-linear elliptic system of equations:

AX4e + 8X, + CX(C + DX4 + EXq + FXC - 0 ()
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wherein the X = (x.y,z) are the cartesian coordinates of the grid points. These equations are solved for each block by succesive
line over relaxation (SLOR). The coefficients A to F are constant or specified functions used for grid control. The grid control
terms are defined along each block boundary and then interpolated across the interior grid. At the boundaries, the values are es-
timated by the condition, that all derivatives normal to the boundary in equation (I) vanish. It is also possible, to modify the
control functions in an interactive way.

The method generates a block structured grid of the H-type and uses a coordinate system as follows: The X-coordinate direction
is the centerline of the fuselage with the positive direction running from the nose to the tail. The Z-coordinate direction is in the
spanwise direction (lefi wing), while the Y-coordinate points upward from the fuilage centerline.

One main difference to other existing methods is the fact, that the grid is not divided into blocks at the beginning of the grid
generation process with following grid generation for each block. As far as possible, the subdomains are kept as large as possible
during the grid generation. So the complete grid generation is splitted into 3 separate parts: Surface grid generation, block surface
discretization and volume grid generation, where the surface grid generation and the block surface grid generation are performed
independently of the final block structure. By doing this, it is possible to get grids with very smooth gridlines across the block
boundaries. Only at the end of the grid generation process, after the volume grid generation, the grid is divided into the final block
structure.

The first step in the generation of the grid is the input and the preparation of the configuration geometry. Figure 2 shows a typical
geometry definition. Fuselage wings and tail are defined by some definition sections. As the fuselage will he mapped into a hex-
adron in the index space, the perimeter lines have to be found in the physical space. This is done automatically (Figure 2). but the
block perimeter lines can be corrected by the user. Wing fuselage intersections can be included in the geometry definition. but it
is not mandatory.

The next step is the generation of the surface grids. First the surface grids for the wing, the canard and the vertical tail are gen-
erated separately using a square root coordinate transformation. The fuselage surface grid is butlt up starting at the different
wing-fuselage intersections. If the wing-fuselage intersections are not included in the geometry definition, they are caluclated
projecting the inboard wing sections on the fuselage surface. After the discretization of the block perimeter lines the surface grid
points arce optimized by the solution of a 2-D version of the PDE (I) on the fuselage surface. This optimization can be done in-
teractively. thereby modifying the source terms in equation (I) for the grid spacing. Furthermore it is possible to select arbitrarily
bounded regions in which the surface grid can be smoothed by the solution of the PDE (I) So it is possible, to get smooth grid lines
across the block boundaries by selecting regions which overlap the block boundaries. To do this, the fuslage is transformed into
a coordinate system with the coordinate x in streamwise direction, a coordinate 6 in circumferential direction which can be either
the arclength or the local angle, and a coordinate r in radial direction. Now the distribution of the x- and 0-coordinates is opti-
mized by the solution of the 2-13 PDE. The radial coordinates of each surface grid point are obtained by a bi-cubic spline ap-
proximation of the input geometry.

During this surface grid generation, only the surface grids of each component are stored separately as two dimensional arrays
(x(ij). y(i,j) and z(i.j), where i and j are the two characteristic computational surface coordinates).

Figures 3 and 4 show two typical surface grids.

The third step is the transfer of the surface grids into the 3-dimensional index space and the definition of all block boundary points
in the far field planes, the discretization of those far field planes, which is very simple, as in the far field planes very regular grids
(straight, paralell lines) are used in those planes. If this has been done, the grid is stored sectionwise from inboard to outboard
on an external dataset as it is indicated in Figure 5 for the index space. (In the index space, the indes i runs in streamwise direction
starting at the upstream far field, the index j runs from bottom to top and k from inboard to outboard)- In each k-section. the
point distribution along the outer boundaries and along the the surface grid lines is known, all the other coordinates are still un-
known.

Next is the discretization of the internal block surfaces. This is done in 3 steps:

* Discretization of the block surfaces k = constant.

* Discretization of the block surfaces i = constant.

0 Discretization of the block surfaces j = constant.

As it is shown in Figures (6) (7) and (8). In each of the above steps, only one block surface is required during the discretization.
Again each block surface k=const., i=const., orj=eonst. is stored as two dimensional arrays X(ij) for block surfaces k=const.,
X(kj) for block surfaces i=const. and X(k,i) for block surfaces j=const. Each block surface is updated as follows: First the
perimeter lines which divide each block surface into sub-blocks are estimated. These lines are taken as cubic parabolas with spe-
cified slopes at the end points. For the one-dimensional discretization along these block perimeter lines arithmetric or geometric
or user specified stretching functions are used as weighting functions. Then the grid of each subdomain is generated either by al-
gebraic interpolation or by solution of the 2-D version of the PDE (I). To get smooth grid lines, those subdomains are chosen
as large as possible. For example the block surface grid in Figure 9 is divided into the following 4 subdomaines:

* The complete region between fuselage upper side and the upper far field from the upstream far field boundary to the
downstream far field boundary.

0 The complete region between fuselage lower side and the lower far field from the upstream far field boundary to the down-
stream far field boundary.

" The region between upstrem far field and the beginning of the fuselage from the lower to the upper far field.

" The region between end of the fuselage and the downstrem far field from the lower to the upper far field.

For each of those subdomaines the PDE (I) can be solved. As the subdomaines are overlapping across the block boundaries, the
block boundaries are also smoothed by the solution of the PDE (I). Finally the block surface g,'ids can be optimized in an inter-
active way by applying equation (I) for aritrarily defined subdomaines and modifying the source terms for equation (.I). Due to
this block surface grid generation, all the block suface grids have

• continuity of coordinates

* continuity of slopes

" and as far as possible continuity of cell size

across the block boundaries.

Figures 9 anti 10 show two of such surface grid.

II
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As the surface grids for each sub-region now being generated, the volume grids can be generated for each sub-block separately
ther by algebraic interpolation, sectionwise solution of a 2-D PDE or by the solution of the 3-D PDE for each block. Similar

to the block surface gid generation the subdomains for the volume grid gemertion, for which the grids are generated separately.
are defined as large as possible. Therefore the volume grids are very smooth across the block boundaries. Figure II gises an
impression of the 3-D grid arrangement.

The final grid is arranged blockwise with uniform boundary conditions for each block, so that it can be used by a block structured
flow solver. Details of an Euler solution in the above grid are given in ref [5]. It can be seen, that the block structure allows the
generation of fine grids for realistic aircraft configurations which seems to be important for future Navier-Stokes calculations It
furter avoids the storage restrictions of existing computers for fine 3-D grids. Because of the small main storage requirements of
the surface and block surface discretization (less than I MB on the IBM OS/MVS system) this part of the method can run inter-
actively and therefore allow interactive control and optimization by the user. It is then possible to generate grids with a total
number of 4.9 million grid points with this version.

3. Graphic Interactive Grid Generantion

While observing the development of hard- and software within the CAD/CAM area or in computer graphics generally, the decision
arises almost mandatorily to rearrange the entire geometric preprocessing to a graphic-interactive solution.

The advantages are obvious: within a dialog and under permanent visual control step by step (and even backwards) a basic ge-
ometry can be upgraded to a final network within one session. Errors can be cancelled immediately since they are easy to recognize
and possible variations can he tried at smallest expenditure of time. In addition, the comprehensive possibilities of 

3
D-represen-

tation of modern workstations with local intelligence, today with smallest CPU-usage, supply picture sequences. which some %ears
ago were only possible with complex trick film techniques.

With this basic objectives the approach described in the following is only one of several possible ways, however the principles of
a necessary new concept are explained. The entire procedure of the grid generation, independently of the supplementar, aids With
which it is accomplished, can be divided into two sub-tasks: geometry-preparation and grid-generation. The first part leads to a
configuration description by means of suitable geometrical elements, the second contains the algorithms which are necessary for
the discretization.

Since for pure geometrical tasks several interactive program systems exist already within the so called Computer-Aided-Design
area, for the solution of the first task, existing software and an appropriate installation should be used. For the execution of the
actual grid-generation some new programming had to be done since appropriate tools are not yet on the market. Of course a
certain number of routines approved in batch operation could be integrated.

3.1 Geometry Preparation

The expenditure of necessary geometry editing depends on the form of the basic geometry, to be supplied is in an. case one dataset
per block, which contains all necessary geometrical data for the grid-generation. For handing over the data, an interface mas de-
fined, where all the information about the geometry is traced back to the most simple element - the 3D-point. All block edges as
well as possibly necessary surface lines will be transfered in form of identified point sequences. All actual examples were deseloped
within CADAM by means of 3D-splines - however handing them over was done also exclusively with point sequences. With this
reduction no additional specifications about the geometry type is necessary. The system is open thereby for coupling to any
CAD-system, and in addition, to the transfer of geometries, developed originally with help of closed functions, model-picked or
NC-data, output of digitizers or data coming from a drawing board. Handing over geometries is independent of curve- or surface-
algorithms. Only a few input conventions are necessary to identify the point-sequences.

3.2 Description of the Topology

A prerequisite for the correct interpretation of the transferred data is a unique relation between the counter directions 1. J. K and
the 6 blocksids. Consequently, for each point sequence the following must be specified:

0 'he block affiliation (block number),
* a characterisation, for block -dges it is a side affiliation, surface lines additionally need specification of counting direction

and position within a set of lines,
• finally the number of points.

A consistent order of the points within a sequence is assumed. The conventions at the interface between geometry preparation
and grid generation is illustrated in Figure 12.

3.3 Mesh Generation
During the process of mesh generation first of all the point sequences are used as input to evaluate 3D-parametric cubic splines.
After establishment of the appropriate coefficients, calculation of a first surface grid is done using an algorithm for the redistrib-
ution of points on given curves. This is done on all block surfaces twice in different counting directions. The used routine was
developed originally for the generation of NC-data but it proved to be very flexible in its application.

If certain peculiarits of this approach are considered already when subdividing the total configuration into blocks, this
starting solution will be already good enough in most cases so that it can be used directly as a final mesh.

If the obtained results of the redistribution are not satisfying, a Poisson-solver with variable source strength is available.
Hereby the grids of the block surfaces can be adapted corresponding to the given block edge lines.

After completion of the (block-) surface grid, discretization of the volumes is done by means of the same procedures Within
integer-planes (index 1, J or K =const.) starting solutions are established, which are optimized alternatively by redistribution or
use of the Poisson-solver.

The whole process runs interactively and menue-driven at a graphic screen, all steps between basic geometry and final volume
distribution can be repeated or varied or cancelled. The results of each action can be controlled and improved immediately if ne-
cessary.

Advantages of the used approach are:

* minimal computational expense, whereby an interactive operation is enabled,
• a very good reproduction of the described surfaces also of complicated configurations using the redistribution procedure.
" high flexibility within block-arrangement, i.e. arbitrary structuring for omplex configurations is supported,
" easy handling of various grid specialities, for example the bisection of the meshwidth when passing to an adjacent block with

use of multigrid logics within the solver.
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3.4 Visualization

The visualization of the established grids is mentioned separately, bemuse her a further, substantial advantage of the iuteractive
approach becomes obvious. Even the illustration of block surface grids only . batch operating already requires several individual
plotjobs - rotations in space and selection of the surfaces to be shown usually is done in a time consuming trial-and-error proce-
dure. Sequences of potijobs finally become necessary, if one tries to represent also the volume grids.

Use of a workstation with local intelligence (e.g. special processors for translation, rotation, scalinig and clipping) will enable
working at a continuously rotating wire frame model, where arbitrary parts can be shown or no-shown. so that at each time a
compliee overview of the current status is guaranteced. The whole volume grid can be downloaded owo the workstation and re-
presented there e.g. by a set of integer-plan.. If their visibility is coupled with a suitable criterion to a valuator, then the use can
walk through the volume-grid step by step and thereby gin a good impression of the cell distribution.

The process of visualization and control of the grids, which is necessary in my case. is reduced hereby to a fraction. Without
these supplementary aids it is tedious and often only possible in iterative manner.

3.5 Examples

The first example in Figure 13 - 15 shows a configuration where the grid has been built up by a global H-H-structure of 3x3x4
blocks. Three of these - around. in front of and behind the store are replaced by a local H-0-mesh with 5x5 blocks. The combi-
nation of two different grid types in that case provides a good geometry representation of the wing as well as of the pylon and the
external store. Results of Euler-computations using the shown grid are are given in [6]. The second configuration, given in Fig-
ures 16 - 19 consists of a combination of internal and external flow in the case of a fuselage with a sidemounted inlet, whereby
the channel is also modelled up to the compressor entry plane. In this case a H-0-structure was used, 18 blocks with a total
number of 236.000 volume cells are forming the computational grid. Computational results and a comparison with experimental
data is discussed in [7].

3.6 Necessary Hard- and Software

The program development described here as well as the presented examples were carried out on a SPECTRAGRAPHICS 1500
workstation. Both main parts of the grid-developement can be accomplished at the same screen using different possible operating
modes of the equipment. In the so-called emulation mode (unit operates like an IBM 5080) the basic geometry is established by
means of the commercial software package CADAM. The mesh generation takes place in the native mode by means of special
application programs, which permit the direct access to the graphic abilities of the equipment with the device-specific soft- and
firmware called PRISM.

As far as within the first step commercial CAD-softwarepackages are used, because of the reduction of the interface data to
point sequences, any similar systems could be Loupled to the method. -

Concerning the necessary application software within the second section, there are several other 3D-extensions of GKS (the
GRAPHICS KERNEL SYSTEM) available, but each package is restricted to its special corresponding hardware.

Thats why some standards would be desirable, which enable an easy transfer of a non-trivial graphic-interactive application
program from one workstation to another.

4. Solution Adaptive Meshes

In numerical fluid dynamics the equations governing fluid motion are often approximated by the means of difference equations,
solved at discrete locations in the finite problem space. Associated with these approximations is a certain amount of numerical
error (e. q. truncation error) which we desire to keep as small as possible. In general, if the higher order derivatives associated
with truncation errors are negligible, then the error itself is negligible. If this is not the case, then the step size between adjacent
points must be decreased.

Numerical solutions of the Reynolds averaged Navier Stokes equations require a very fine grid resolution in all those regions where
viscous effects are dominating, as long as no wall functions are used. For flow fields with large separated regions which very often
are highly influenced by those separated regions, it is impossible to prescribe correc wall functions. it is also impossible to predict
the position and the shape of all the separated regions and the position of all the free shear layers. So at the grid generation for
such flow fields the regions, where very fine grid resolutions ae needed, are still unknown. If constant step sizes are used, this
means an increase in the number of grid points over the entire space, which for most problems becomes prohibitively expensive.
Some other, more practible solutions to this problem are:
0 The use of local grid refinement. This approach uses a coarse global grid with embedded fine sub-grids in regions of interest,

which is principally possible within the framework of the block structured concept.

4 The use of solution adaptive grids. In this approach, the grids are adapted to the solution during the solution process

In the following sections there are described two different methods for the generation of adaptive single block meshes and adaptive
block structured grids with local grid refinement.

4.1 Mesh Adaption in Single Block Meshes

If the computational grid is adapted to preliminary results in such a way as to minimize the aforementioned error term. we can
expect the final solution to be an improvement in terms of accuracy over the solutions obtained in uniform or arbitrary grids. In
addition, one would expect the same accuracy for this, a so called 'solution adaptive grid' as for a uniform grid having many more
ponts.

It is assumed that the redistribution of grid points should be based on the distribution of the curvature of a typical. the flow field
describing function u (for example: surface pressure distribution). The curvature is obtained at each point i by the central differ-
ence approximation 24n, a-- - 1 '.h + 0(h', h,) 2

a, - ui - r (2)

using forward and backward difference operators. For sake of simplicity we may set a, = a2 and N = aN 1. By nomalizing the
curvature with the constant step size h,

h~ - x ! (3)

N- I

we obtain a weighted measure k, of curvature at each point:

k,= a- (4)
ha

IZ
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with

hi = Xi - . (5)

In order t damp extreme values in curvature and to increase the interval of influenoc, a new measure of curvature.

i- n + 1,N-n (6)
J-2

is introduced for inner points. At boundaries a similar but one-sided formula is used. In all case described here, a value of
n = I was used, resulting in smoothing three points.

The transformation function is finally obtained from the integration of alpha (see Figure 19):

Si- (7)
j-2

with S, = 0. One notices that the transformation function S(xi) has its maximum slope where the curvature of u(xi) has its maxi-
mum curvature, and its minimum slope where the curvature of u(x sub i) is also minimal. The table of values obtained from
., - S(xi) can also be used in its inverse form xi = x(S.). By dividing the interval

SN J'o= 8

inlo N -I subintervals,
,+=,, .i =2.3...N.

one can obtain through interpolation the new distribution 1i - k(Si'). In order to guarantee monotonicity this interpolation must
be linear, then from the existence theorem the inverse function exists because SN is continous.

The new step sizes found by the procedure just described depend completely on the behaviour of the function u(xi). If this function
is piecewise linear, some of the a, become zero. This can lead to uncontrollably large step sizes. Since however, the accuracy of
numerical methods always depends on the chosen step size, an additional condition must be introduced, controlling the maximum
interval between two adjacent points. The step parameter P is defined as

h = Ph (9)

Where h is again the step size for uniform point distribution. The gradients of S(x) are now compared against a minimum value

q n 0 (10)

which is controlled by P. Therefore it proves neccessary to use an additional linear transformation in order to ensure such a mi-
nimum gradient of value q.

Figure 20 shows an example for this adaption techique for a C-type mesh around an airfoil.

The initial point spacing (lower mesh in Figure 20) is already non-uniform, having more concentrated points at the leading and
trailing edges; in these regions a pressure distribution is assumed a priori showing larger curvature. The adapted grid in the upper
part of the same Figure is based on the surface pressure distribution calculated by means of the initial mesh. Therefore concen-
trations of mesh points at the approximate middle of the upper and lower surface as well as at the traihng edge are due to the
curvature of the pressure distribution. The influence of the grid adaption on the flow solution is given in reference [8).

4.2 2-D Adaptive Block Structured Grids with Local Grid Refinement

The use of adaptive grids in combination with local grid refinement combines the advantages and cancels the disadvantages of each
method. So the use of adaptive grids requires a high number of grid points to avoid jumps in the grid spacing. On the other hand,
the use of fine subgrids would be a very good approach for viscous flows, if the boundaries of those subgrids could be adapted to
the structure of the flow field. If additionally a block structure, which is adapted not only at the geometric requirements but also
at the structure of the flow field, is used, we will have a very effective discretization of the flow field; (adaptive grids with local grid
refinement) and also a very effective procedure for the flow solution by the use of zonal approach (Euler/Navier Stokes) which
due to the block structure can be done very simply.

The basic idea for the method described here has been pven by J. Thompson in [9]. Following a method fot generating 2-D
adaptive grids with local grid refinement for Navier Stokes calculations is described.

A constant dicretization along the i direction in the index space is discribed by the relation:

Axi const.

Which can be written in the computational (index-) space as:

=, CORfSI.

or

X44 mf 0

which is a one dimensional Laplace equation. It can easily be seen, that the relation for a two dimensional, constant discretization
is:

X Z + XV = 0

where X = (x,y) are the cartesian coordinates. If not the geometric distance but the product of a weighting function and the ge-
ometric distance is kept constant in the discretization, this can be expressed by the relation:

WAx, = cotrl.

Where W is any weighting function. In the computational space this yields to:

WxC = cons.
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11 c+ l'~xt 0 (11)

which is a one dimensional Poisson equation. Again. the relation for 2 dimensions is:

wx4 + +Vnn + + 1' A = 0 (12)

Where W4' and W are the weighting functions for the two computational coordinate directions. The above equation is an elliptical
partial differentia equation which is commonly used for grid generation. If now characteristic properties of the flow field are taken
as weighting functions Wi and W4~* the above PDE will generate adaptive grids. The weighting function for the computational
i-direction should be coupled with the pressure distribution, and the weighting function in j direction, which is the direction normal
to the main flow direction, should be coupled with any indicator for viscous effects. Numerous experiments with different
weighting functions have shown Idt the best weighting function for the computational i-direction is given by the relation:

ap 4ep
Ws - ' -' (13)

So the weighting function is a combination of the first and the second derivative of the pressure distribution. This gives a grid
adaption to pressure gradients and extreme values. o and 0 are weighting parameters by which the user can make the first or
second derivative more dominating. Both derivatives are normalized in such a way that the absolute values move between 0 and
1.0. In the j - direction, possible weighting functions may be the total pressure loss- or the vorticity distribution. It was however
found out, that the total pressure loss is the most suitable parameter to drive the grid adaption to any flow field discontinuity,
because its values move within a small range whereas the values of the vorticity spread over several powers of ten. So the weighting
function for the j-direction has been choosen as:

t, = Y(I - (14)

Where y again is a scaling parameter. The grid adaption can be performed in 3 levels:

* Adaption of the surface point distribution along the surface to the surface pressure distribution.

* Adaption of the field grid points normal to the flow direction.

* Adaption of the field grid points in flow direction.

The perimeter adaption along the surface is done by the solution of a one dimensional poisson eqation

- + x( = 0(5)

If the above equation is approximated by finite differences in the index space this leads to a simple tridiagonal equation system
The weighting function is given by equation (13). For this surface pressure adaption, only the surface pressure distribution is re-
quired. For the field adaptions the weighting functions according to eqs. (13) and (14) are taken. Those weighting functions are
introduced as source terms into the elliptical PDE for grid optimization. In order to get smooth adapted grids across the block
boundaries, the field is divided into sub-regions which are as large as possible and which are overlapping. Only at the end of the
grid generation process, the grid is split up into the final block structure.

The local grid refinement is treated as follows: First the uniform, finest grid is generated. Then the coarser blocks are obtained
by dropping each 2., 4., 8. gridpoint in i- and/or j-direction. Figure 21 shows such an unadapted grid. Here again, the initial grid
is already non-uniform. Along the surface the grid points are concentrated at the leading edge and at the trailing edge. For the
grid adaption, the weighting functions of the flow solution are interpolated into the uniform fine grid. Then the grid adaption is
performed for the uniform fine grid and finally the coarse subgrids are generated. The best strategy for the use of such adapted
block structred grids seems to be the following:

* Make an Euler calculation in a coarse mesh to get the significant surface pressure distribution. (Position of the extreme
values and gradients). It is not necessary that the solution is converged, it is only important, to have a significant pressure
distribution.

4 Next, a Navier Stokes grid adapted to this surface pressure distribution is generated. This grid can have coarse mesh sizes
in j-direction in order to accelerate the time development of the solution.

* Start the Navier Stokes solution.

* During the solution process, the field grid is adapted from time to time by the use of the total pressure loss as weighting
function. So the grid points are automatically concentrated in regios with highly dominating viscous effects

Figures 22 and 23 show a significant pressure distribution and the total pressure loss contours which are obtained during the sol-
ution process for the geometry of Figure 21. In Figure 24 the surface pressure adapted grid is presented. Compared with Figure
21, it can be seen, that the grid points are concentrated in regions with gradients and with extreme values. Figure 25 finally shows
the adapted grid. Now the viscous regions can be recognized in the grid.

The field adaption to the total pressure loss distribution is very stable and can be done automatically during the flow solution.
It was also found, that the field adaption to the field pressure distribution has no advantages as long as there are no pressure
discontinuities in the flow field. The adaption of the grid to the surface pressure distribution is sufficient and can be done once
at the beginning of the calculation.

5. Conclusions
Although all the presented grid generation techniques use only elliptical grid generation (hyperbolic and parabolic grid generation

is also widely in use), they show already, that there is no unique grid generation technique.

All automatic grid generation procedures have the advantages that the grid can be described by a few grid generation parameters
and by this, the complete grid can be modified or changed very fast. But the automatic grid generation has its limitations in the
complexity of the geometry. For each new geometry, the automatic grid generation procedure has to be extended to the new con-
figuration.

The graphic interactive grid generation avoids the difficulties with the complexity of the geometry On priniple. each grid can be
'constructed' by the user, where automatic subsystems (algebraic or elliptical grid generation techniques) can be used.
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Two- and three-dimensional viscous flow computations of complex conliguraio; require a very large number of mesh points to
resolve all the gradients properly. Here the block structuring in combination with mesh concentration and adaptive grid generation
can heip to provide the required flow field accuracy.
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7. Figures

Figure I.- Work Strurturing of a Complex Configurat ion

Figure 2. Geometry Definition of a Fighter Type Aircraft

Figure 3: Surface Grid/or a Fighter Type Airc~raft
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Figure 4: Srface Grid for a Transport 7),pe Aircraft

Figure 5: Sertionwise Storage Arrangement of the Complete Grid
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Figure S.: Mork Surfacr'v / = onvi.

....... .. ...............

........... ... .... .....

..........

Block Surface Grid

in the Plane of Symmetry

Figure 9:



117

r- Block Surface Grid
in the Wing Lower Surface

'J

figure /0:

rigure u~3-1) Grid ,1rrangemeni



118

A Counter directions 1, A1 K
and identification of -

the block-sides

8 Characterisation of
the block-sides 

.

C ('haraclerisation of
the surface-lines

Figure 12. Conventions at the Interface between Geometry
Preparation and Grid Generation
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Sulfar'e Mesh and Plane of Symmetry
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Ji gye 14. Wing-Py/on-,, ore Combinalioa,
Block Structure of Global Arrangement

Figur /-5. Wing- Pylon-store Combination,
Loral Block Structure
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Figur /6: Fuselage wai Inlet, Mesh on Body Sta-fare,
Plane of Symmetry and within rngine Channel

Figure 17.: hielage withi Inlet,
Block Bloundariex near inlet
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Figure 21. Non-Adapted Block Structured Grid
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Figure 23: Total Pressure Loss Contours.

Figure 24: Surface Pressure Distribution Adapted Grid

Figure 25: Surface Pressure Distribution and Total
Pressure Loss Adapted Grid.
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4.12 EXPERIENCE WITH THREE-DIMENSIONAL COMPOSITE GRIDS*
by

J. A. Benek, T. L. Donegan, and N. E. Suhs
Calspan Corporation/AEDC Division

Arnold Air Force Station, Tennessee 37389-9998

ABSTRACT

Experience at the AEDC with the three-dimensional (3-D), chimera grid embedding
scheme is described. Application of the inviscid version to estimate wind tunnel wall
interference on a wing/body/tail configuration is described. Applications of the vis-
cous version compute a 3-D cavity and a multiple-body configuration. A variety of grid
generators is used, and several embedding strategies are considered.

1.0 INTRODUCTION

In the last ten years, Computational Fluid Dynamics (CFD) has evolved from an
academic enterprise into a necessary, if not integral, part of aircraft design and devel-
opment. Two circumstances have stimulated this change: the maturation of fast numerical
algorithms for solution of the Euler and Navier-Stokes equations and the reduction of the
price of the large supercomputers required to perform the computations. As the entry
costs decrease and the value of flow simulations becomes more widely recognized, the de-
mands for even more complex simulations increase. The heightened level of expectation
also increases pressure to produce "timely" solutions. This pressure can only be ex-
pected to increase as CFD becomes more closely coupled to the design and development
processes. Frequently, the most critical phase in meeting the demand for computations is
the construction of a suitable mesh. To ameliorate the difficulties experienced with
grid generation, alternative computational strategies are being explored. Basically,
they can be divided into two categories: global approaches and domain decomposition ap-
proaches.

The global mesh approach uses a single computational net to discretize the geometry
and flow field (e.g., Thompson (Ref. 1), Rubbert and Lee (Ref. 2), and Shang and Scherr
(Ref. 3)). Complex geometry frequently requires the introduction of internal boundaries
(e.g., cuts) into the domain and may result in very skewed grids and regions of unac-
ceptably low spatial resolution. The introduction of internal boundaries increases the
bookkeeping required in the flow solver and can require modifications to the solution
algorithm. One novel approach utilizing a global mesh is described by Jameson, Baker,
and Weatherhill (Ref. 4). The major thrust of this work is to use a finite volume algo-
rithm based on tetrahedrons and eliminate the requirement for an ordered mesh. A complex
data-structure is required to define the relationships among the grid points comprising
the volumes.

Domain decomposition includes many techniques: zonal or grid patching [e.g.,
Hessenius and Pulliam (Ref. 5), Rai (Ref. 6), and Holst, et al. (Ref. 7)], and grid em-
bedding/oversettings [e.g., Atta and Vadyak (Ref. 8), Benek, et al. (Ref. 9), Venkatapathy
and Lombard (Ref. 10), nd Berger (Ref. 11)]. The basic idea of this strategy is the
subdivision of the computational domain into regions (not necessarily disjoint) that can
be more easily meshed. An additional advantage is that each subdomain may be treated
separately and a different flow model or solution algorithm used in each. Such flexi-
bility provides economies in computer resources as the more expensive viscous flow
solvers can be confined to regions where viscosity dominates the flow. The key to suc-
cessfully implementing this strategy is provision of a means of intergrid communication.
This is the point at which the various techniques differ most widely. All these tech-
niques require additional bookkeeping beyond that required for the basic flow sulvpr to
facilitate communication.

Presently, no one method has been demonstrated to be clearly superior. It seems
likely that some synthesis of the various strategies will become the method of choice.
In the meantime, we have chosen the grid embedding approach as it includes grid patching
as a special case and thus provides a flexible method for accomplishing a broad range of
flow simulations. In this paper we will describe our experience with the chimera scheme
which was first developed by Benek, Steger and Dougherty (Ref. 9). The three-dimensional,
color graphics code required to support this effort was developed by Buning and Steger
(Ref. 12).

2.0 DESCRIPTION

The chimera grid embedding technique is a domain decomposition strategy and has two
principal elements: (1) decomposition of the domain into subdomains which typically
overlap and (2) communication among the grids. The selection of subdomains is arbitrary;

*The research reported herein was performed by the Arnold Engineering Development
Center (AEDC), Air Force Systems Command. Work and analysis for this research were done
by personnel of Calspan Corporation/AEDC Division, operating contractor for the AEDC
aerospace flight dynamics test facilities. Further reproduction is authorized to satisfy
needs of the U. S. Government.
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the major considerations are the identification of regions that may be easily meshed, tne
isolation of special regions of the flow (e.g., where viscous effects are important), and
the available computer memory (which determines the maximum number of points in each sub-
domain). Theoretically, this means the total number of mesh points in the entire domain
is unlimited. Intergrid communication is established by the transfer of boundary data
among the subdomain grids. The data for embedded grid boundaries are obtained by inter-
polation of the independent variables in the mesh in which the boundary is embedded.

There are two types of interpolation boundaries: (1) outer boundaries and
12) artiflci.i boundaries. Artificial boundaries are produced whenever a solid surface
is embedded in or overlaps another subdomain. Figure 1 depicts a flapped airfoil where
the flap mesh lies within the airfoil mesh. Points of the airfoil mesh are contained
within the solid boundary created by the flap surface, and therefore lie outside the
computational domain. A portion of the airfoil mesh in the neighborhood of the flap is
excluded from the airfoil grid (i.e., the shaded area around the flap within the airfoil
mesh). The boundary of this excluded region of the airfoil mesh is an artificial
boundary.

The computational procedure can be illustrated as follows: The solution is
advanced on the airfoil mesh. Outer boundary data for the flap mesh are interpolated
from the solution on the airfoil mesh and transferred to the flap solution. The trans-
ferred data are used as boundary conditions to advance the solution on the flap mesh.
Data for the artificial boundary of the airfoil mesh (dashed line on the flap grid) are
interpolated from the solution on the flap grid. The interpolated data are transferred
to the artificial boundary in the airfoil mesh and the process repeats until convergence
is obtained on each mesh.

The chimera procedur, naturally separates into two parts, (1) generation of the
composite mesh and associated interpolation data and (2) solution of the flow model or
models on each mesh. Each part is embodied in a separate computer code, PEGSUS and
XMER3D. PEGSUS takes independently generated component or subdomain grids and the em-
bedding specifications as input and automatically constructs the composite mesh and com-
putes the interpolation data which are output. XMER3D takes the PEGSUS output and flow
specifications as input and solves the appropriate flow model on each grid.

2.1 PEGSUS

Automatic generation of a composite mesh from the input component grids requires
PEGSUS to (1) establish the proper lines of communication among the grids through appro-
priate data structure, (2) construct holes within grids, (3) identify points within
holes, (4) locate points from which boundary values can be interpolated, and (5) evaluate
interpolation parameters. In addition, PEGSUS performs consistency checks on the inter-
polation data to assure their acceptability and constructs output files with the data
structures appropriate to XMER3D. The most recent version of PEGSUS allows very general
interactions among grids as indicated in Fig. 2. In addition, any grid may introduce a
hole into any other mesh. Details of the hole construction process, and associated data
structures, are provided by Benek, et al. (Refs. 9, 13, and 14). A trilinear interpola-
tion is used to obtain boundary data.

2.2 XMER3D

The implementation of the chimera scheme must provide for the use of multiple flow
models. The current choice of models is the 3-D Euler equations for inviscid flow and
the 3-D thin-layer Navier-Stokes equations for viscous flow. The algebraic model of
Baldwin and Lomax (Ref. 15) is used to simulate turbulent flow. The implicit, approxi-
mate factorization scheme of Beam and Warming (Refs. 16 and 17) is used to solve the
model equations. The implementation follows that of Pulliam and Steger (Ref. 18) and
uses explicit boundary conditions. Modifications to accommodate the chimera scheme are
described by Benek, et al. (Ref. 14).

3.0 APPLICATIONS

A major motivation for the development of the chimera scheme at the AEDC was the
requirement to provide routine computational support to testing. Estimates of the ef-
fects of the wind tunnel environment on aerodynamic data are of particular interest.
Typically, lead times are short and grid generation is usually the pacing item in per-
forming CFD simulations. Also, there is the requirement to compute time-dependent flows
involving aerodynamic configurations in relative motion as exemplified by the space
shuttle booster configuration and store separation from military aircraft.

The 3-D chimera scheme has been used to compute both viscous and inviscid flows
over a variety of configurations. These include a wing/body/tail, bodies of revolution
in close proximity, cavity flows, and base flowF for Mach numbers spanning the range from
subsonic to supersonic. The following sections will illustrate some of these applica-
tions of the chimera scheme.

3.1 Inviscid Flows

One of the intended uses of the chimera scheme at the AEDC is the computation of
wind tunnel wall and support interference (e.g., Kraft, et al. (Ref. 19) and Suhs (Ref.
20)). A version of the chimera scheme was developed for this purpose. The model shown
in Fig. 3 was designed for assessment of wind tunnel wall interference. It consists of
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a blunted ogive-cylinder and a mid-mounted wirg and tail. The wing and tail are constant
chord planforms swept back at 30 deg and have no twist or taper. Cross sections parallel
to the plane of symmetry are NACA 0012 airfoils. Initial, free-air solutions for the
confiquration were reported in Refs. 13 and 14.

For the tunnel calculations the outer boundaries of the grids about the fuselage,
a portion of the sting support, wing, and tail for this model are illustrated in Fig. 4.
The wind tunnel walls are represented as shown in Fig. 5 with the model embedded in the
tunnel mesh. The region devoid of mesh lines on the tunnel symmetry plane in Fig. 5
represents the hole in the tunnel grid introduced by excluding points from the solution
on the tunnel grid in the vicinity of the model.

Figure 5 illustrates the flexibility inherent in the chimera scheme. The model
geometry and sting grids were constructed by adding a mesh containing the sting to an
existing mesh used to model the fuselage. The component-by-component construction
process is particularly useful for wall interference calculations because no additional
grid generation is required to change model angle of attack. All that is required is
that the grids representing the wind tunnel model be rotated relative to the tunnel mesh
and be re-embedded in it. PEGSUS performs such transformations on component grids by a
single change of input.

Several grid generators were used to construct the component grids shown in Figs.
4 and 5. They are a two-dimensional (2-D) grid generator developed by Sorenson (Ref. 21),
and the three-dimensional generators developed by Soni (Ref. 22), and Thompson (Ref. 23).
There are a total of 250,445 grid points in five meshes for this configuration.

The wall interference model was tested in the I-ft Aerodynamic Wind Tunnel (IT) and
in the 4-ft Aerodynamic Wind Tunnel (4T). Tunnel IT has a one-foot-square test section,
and 4T has a four-foot-square test section. The model has 2.5-percent blockage in IT but
only 0.16-percent blockage in 4T, so the 4T data are considezed to be interference-free
over the range of test conditions presented. Measured static pressure data were obtained
on the model surface and at an interface near the Tunnel IT walls at a radius of 5 inches
(see Fig. 6) . Static pressures along specific streamwise lines at the interface were
measured by a two-component static pipe technique (Ref. 24). For the comparisons here,
data were obtained at angular locations, 0, of 15, 85, 95, and 165 degrees as shown in
Fig. 6.

Calculations were made to compare the computed pressures with the measured pres-
sures and to determine the quantitative effects of wall interference on the model. The
calculations were made using the chimera technique and the application at the tunnel
walls of a porous wall boundary condition developed by Jacocks (Refs. 19 and 25). The
conditions chosen for comparison were a Mach number, M., of 0.9 and an angle of attack,
a, of 4 deg. The tunnel porosity is uniform at three percent.

The pressure coefficient comparisons at the interface (Fig. 7) show good agreement
and correctly predict the trends. The expansions near the wing and tail locations are
evident, especially near the side wall. The wall interference effects on the model sur-
face may be seen by comparing the computed and experimental pressure coefficient distri-
butions on the wing, fuselage, and tail for both the tunnel and free-air cases (Fig. 8).
The free-air solution computes a shock further downstream than the tunnel solution. This
is consistent with the tunnel data, assuming the 4T data are interference-free. The ab-
sence of the viscous effects in the calculations result in the shock wave location being
aft of the experimental shock. However, the trends are the same.

Mach number contours on the wall interference model are presented in Fig. 9. The
contours join smoothly across mesh boundaries. The shock wave on the wing can be seen to
continue around the fuselage. The fioure illustrates the effect of decreasing spatial
resolution in high gradient regions. The shock wave can be seen to be smeared on the
fuselage compared to the wing because of the decreased resolution in the fuselage grid.

The success of the chimera scheme in providing realistic estimates of transonic
wall interference has made its use for test planning and data analysis routine at the
AEDC. Detailed descriptions of the wall interference calculations may be found in Ref. 26.

3.2 Viscous Flows

Cavity Flow

Interest in the flow in and around cavities has increased with the need for ad-
vanced aircraft to carry stores internally. Benefits fror such configurations include
increased range, better maneuverability, and reduced detection signatures (Ref. 27).
Still, difficulties arise when attempting to safely eject a store from a weapons bay.
In order to understand these difficulties a computational effort to determine the loads
on, and trajectories of, stores in weapons bays is being pursued at the AEDC. As a first
step, an empty 3-D rectangular cavity is modeled.

Using the grid overlap capabilities of the chimera scheme, two grids were developed
to define the rectangular cavity in a flat surface. The first grid is a Cartesian grid
defining the cavity and a region above the cavity. In Fig. 10, a sidewall plane of the
cavity grid is shown. The cavity grid has a concentration of points along all solid wall
surfaces and in the region of the shear layer. This grid extends above the cavity by 20
points in order to capture the entire shear layer in one grid. The cavity grid has a
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total of 79,002 points. Also shown in Fig. 10 is a side plane of the Cartesian grid de-
fining the region exterior to the cavity. Again, points are concentrated along the solid
wall. This grid also extends in front of the flat plate in order to allow the flow to
stagnate on the leading edge and allow a boundary layer to grow. The grid above the
cavity has 78,625 points. These two grids overlap with a common region above the cavity
and match point for point.

Comparisons of computations were made with experimental data taken at the Trisonic
Gasdynamic Facility of the Air Force Wright Aeronautical Laboratories (Ref. 28). The
Trisonic Gasdynamic Facility is a closed-circuit, continuous-flow wind tunnel with a two-
foot-square test section. The Mach number range is 0.23 to 3.0. The rectangular cavity
tested has a length-to-depth (L/D) ratio of 5.6 and a width-to-depth (W/D) ratio of 1.7.
The dimensions of the cavity and flat plate are shown in Fig. 11. Pressure data were
taken along the plane of symmetry of the cavity on the front, bottom, and aft walls, as
well as on the sidewall and on the flat plate surface as illustrated by Fig. 11. Two
types of data, steady and fluctuating static pressures, were made. The steady measure-
ments were made using standard pressure transducers connected to static orifices and the
fluctuating (or unsteady) measurements were made with flush mounted Kulite® pressure
transducers. The unit Reynolds number was 2.31 x 106 per foot.

Experimentally, cavity flows have been shown to be unsteady with large temporal
pressure fluctuations (Refs. 29 and 30). Therefore, the flow solver was run with global
time stepping. The characteristic time for the flow, tch, is defined as the time for the
flow to traverse the length of the cavity at free-stream velocity, approximately 0.85 ms.
Typically, the calculation is run for 5 tch to permit the initial starting transient to
decay. After the initial startup, the steady pressure coefficients are calculated from
time-averaged pressures for the succeeding 6 tch. Comparisons of data and calculations
for fluctuating pressures are made in terms of the sound pressure level (SPL). SPL in
decibels (db) is defined as

SPL (db) = 180 + 20 log (Prms/Pref)

where Prms is the root mean square of the pressure in psi and Pref is 2.90075 psi, a
standard reference pressure. As with the pressure coefficient results, the SPL is calcu-
lated over the same 6-tch interval.

In Fig. 12 calculated centerline pressure coefficients at M_ = 0.74 are compared to
data for the front, bottom and aft walls of the cavity. The comparisons in Fig. 12 show
good agreement between calculation and data. Of particular note is the good agreement on
the aft wall where the shear layer stagnates. Comparisons of data and calculation for
the SPL are shown in Fig. 13. The difference between calculation and data ranges from 2
to 5 db; still, the general trend is represented by the calculation.

In Figs. 14 and 15 representative details of the cavity flow are shown at four dis-
crete time slices. The time differences between each time slice is 0.4 tch. In Fig. 14,
Mach contours are shown for the cavity plane of symmetry. At t = 11.0 tch, the shear
layer across the cavity opening is stagnating on the back wall and is in the process of
moving out oL the cavity. The shear layer is shown to have moved out of the aft end of
the cavity at t = 11.4 tch. At t = 11.8 tch, the shear layer begins to move back down
into the cavity setting up a separation region downstream of the aft edge of the cavity.
Finally, at t = 12.2 tch, the shear layer at the aft end of the cavity has moved back in-
to the cavity as the separation region past the aft edge increases in size. The shear
layer at the front portion of the cavity shows relatively small changes in the flow.

Another way to look at this complex flow of the cavity is shown in Fig. 15. For
this figure the mass flux across the cavity opening is plotted as a 3-D surface. If the
surface bulges upward, mass is flowing out of the cavity. The three-dimensionality of
cavity flow is illustrated by the changes in the mass flux distribution at different
lorations and times. The mass flux shown at the front edge of the cavity is caused by
vortices that are generated in this region. With the exception of the front-edge com-
plexity, the flow is shown to have a greater amplitude at the aft end of the cavity which
is consistent with the large SPL distribution of Fig. 13. Details of this work can be
found in Ref. 31 along with results for M. = 1.5.

Three-Body Configuration

Flow about an aerodynamic configuration consisting of three identical bodies of
revolution was computed. Each body (Fig. 16) consists of a 3.333-caliber cylindrical
centerbody and a 1.667 tangent-ogive forebody and afterbody. The afterbody is truncated
to join a 0.7-diameter sting. Details of the model and a discussion of the experiment
are given by Cottrell, et al. (Ref. 32). The body axes are arranged in an equilateral
triangle shown in Fig. 17. The spacing in the figure is given in Iodel diameters. The
right, left, and bottom designations are consistent with Ref. 32 and were established by
looking upstream. The composite grid about this configuration consists of ten grids with
a total of 627,172 points. The outer mesh G1 is a hemispherical shell whose polar axis
is the x-axis. Grids G2 , G3 , and G4 (Fig. 18) are cylindrical grids whose axes coincide
with the polar axis of GI. These three grids have continuous grid lines and slopes
across the grid boundaries. Each grid is "blocked" with two viscous grids. Grids G5 ,
G7, and G9 are hemispherical viscous grids representing the three forebodies. Grids G6 ,
GS, and Gl0 are cylindrical grids representing the aft portion of the three bodies. Fig-
ure 18 shows the three bodies and their grids embedded within the three cylindrical grids,
G2, G3, and G4 . Figure 19 shows a cross-section of the composite mesh in a vertical
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plane through the x-axis (see Fig. 17). The overlap regions among the grids can be seen
in the figure. The flow field was computed for the three-body configuration at
M. = 0.95, ReD = 2 x 105, and a = 0 deg. This flow was assumed to be turbulent from the
nose. The Baldwin-Lomax (Ref. 15) algebraic turbulence model was used to simulate the
effects of turbulence.

Figure 20 shows axial distributions of C at several azimuthal locations on the
lower body. Because of the 120-deg flow symme~ry (Ref. 32) only one body need be
examined. The agreement between the calculation and experiment is generally good on the
forebody. The comparison becomes less favorable as separation is approached but again
becomes generally good over the afteroody. The data indicate that the interior flow
(i.e., within the "channel" formed by the bodies, e.g., -60 :. 0 s 60 deg on the lower
body) is accelerated compared to the exterior flow. The computation predicts the in-
terior shock too far upstream and does a poor job of predicting the e:xterior separation/
shock interaction. Such behavior is not unexpected as the Baldwin and Lomax turbulence
model does not predict separated flows well, especially as the separation becomes mas-
sive. Modifications suggested by Degani and Schiff (Ref. 33) are being investigated to
determine if they will improve agreement in the separated regions.

Figure 21 shows computed particle paths near the model surface and experimental oil
pictures. Figures 21a and b compare "computed" and measured oil-flow patterns as seen
from above, and Figs. 21c and d make a similar comparison as seen from the bottom of the
configuration. In general, the basic features of the experimental oil flows are cap-
tured. Kaynak, et al. (Ref. 34) discuss the difficulty of comparing and interpreting
oil-flow patterns and particle streamlines. We will not endeavor to analyze the flow
patterns in more detail here.

The flowfield was also computed for the three-body configuration at a = 4 deg and
M = 0.95. These results are presented in Ref. 35 along with computational results for
an isolated body at M_ = 0.95 and a = 0 and 4 deg.

4.0 DISCUSSION

Sections 2 and 3 described our experience with the chimera scheme. However, there
are several other aspects of its use that cannot be as clearly documented and several
questions that remain unanswered. Perhaps, the most significant change that was made
from the 2-D work reported by Benek, et al. (Ref. 9) was a change from the mixed 2nd/4th-
order accurate approximations of Pulliam and Steger (Ref. 18) to a consistently 2nd-
order approximation. Large oscillations in the solution with the mixed-order scheme oc-
curred when grid boundaries crossed high gradient regions. Switching to a 2nd-order
scheme has eliminated this problem.

Another question that commonly arises involves the interpolation at grid boundaries.
Is the boundary approximation conservative? Our experience indicates that the major
factor affecting accuracy at the boundaries is the resolution between the grids in the
neighborhood of the boundary. Whenever there is a "large" mismatch in resolution, con-
vergence slows and large oscillations in the solution are evident near the interface.
Should the mismatch occur where the interface crosses a high gradient region, the situa-
tion is exacerbated. A more detailed and systematic study of this aspect of domain de-
composition techniques is in order.

The chimera scheme was designed to function independently of the particular genera-
tion scheme used to construct subdomain grids. Our experience with grid generators in-
clude 2-D and 3-D elliptic codes, 3-D algebraic codes, and a hyperbolic code. The
chimera scheme has successfully combined subdomain grids from several grid generators and
many different topologies and has provided the basis for routine calculation of transonic
interference effects from tunnel walls and model support structure at the AEDC.

SUMMARY

We have described our experience with the chimera grid embedding scheme. The
method was applied to the computation of transonic wall interference with particular suc-
cess and is being used routinely for support to testing at the AEDC. Experience with the
viscous version is still being accumulated, but the potential to compute a wide range of
flows has been demonstrated. Component grids have been generated by several 2-D and 3-D
grid codes which emoloy algebraic and partial differential equations as generators. We
experienced no difficulties combining grids constructed by the various methods into a
composite mesh.
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SU ARY

A new grid generation code is described which is based on the multi-block approch.
Grid generation around three-dimensional configurations is divided into three major
parts, namely surface definition, surface grid generation and field grid generation.
Coons' patches are used to define the surfaces and their intersection lines. Surface
grids and field grids are generated using the numerical solution of an elliptic system.
An effective means for the control of the grid spacing has been developed which is based
on an iterative determination of the source terms in the elliptic system. The code is
used to generate grids around a wing-body combination and a high bypass nacelle confi-
guration,

1. INTRODUCTION

Many codes for the computation of three-dimensional flows use rather simple grid
generation procedures, such as stacking two-dimensional grids. These codes cannot be
expected to resolve accurately regions of three-dimensional geometry, for example thevicinity of the wing tip or complex intersections of aerodynamic surfaces.

Essentially three-dimensional generation methods can suffer from problems due to
overlapping of grid lines in the physical domain and may generate grids with discontinui-
ties of the metrics in the field as often occurs in the case of algebraic generation
systems. Codes based on differential equation systems require much more computing time
and often there are no means available for a direct control of the grid density every-
where.

We postulate that the first requirement of a 'good' grid generation method should be
user friendliness. The user should be able to cluster grid points in regions where he
expects the flow gradients to be high. The code should be robust, which means it should
be applicable to a wide range of configurations without changing the numerical parameters
of the method. Secondly the code should be at least one order of magnitude faster than
the flow solver under consideration. We believe no grid generation code would ever give
the optimal distribution of grid points with its first run. After visual inspection of
the grid the user will decide either to change the input of the grid generation code and
makes a new run of the program or to use the grid for flow computations. Thirdly the part
of the computer program, which depends on the specific configuration under consideration
should be as small as possible. This requirement leads to the concept of generating block
structured grids as used in [1, 2, 3, 4J.

The present report describes recent work to meet these requirements. First the prob-
lem of grid topologies around aircraft configurations is discussed in some detail. In
section 3 the surface equations which are used to define arbitrary, intersecting surfaces
are given according to Coons (5]. The generation of both two-dimensional surface grids
and three-dimensional field grids is based on the numerical solution of an elliptic
system as outlined in [6]. An effective means for the control of the grid point distribu-
tion in the field has been developed which uses an iterative determination of the source
terms in the elliptic system. This procedure will be described in section 4. The computer
program is based on the multi-block approach. Therefore, the mayor part of the program
will be independent of the problem under consideration. An outline of the computational
procedure will be discussed in section 5. Finally, the results of the generation of grids
around a wing-body and a high bypass nacelle configuration are given.

2. GRID TOPOLOGIES FOR TRANSPORT AIRCRAT COUFIGURATIONS

It is well known that there does not exist an optimal grid topology for arbitrary
aircraft configurations. Each aerodynamic component of an aircr-ft may have its own natu-
ral grid structure and usually these natural structures of the components can not be
patched with each other. For a given configuration one has first to decide about the
global grid topology. The global grid should be compatible with all local subgrids, which
are used for resolution of the individual components.

For the particular configuration of e transonic transport aircraft the following
main components have to be considered: Large aspect ratio, moderately swept wing, blunt
fuselage, moderately swept empennage, engine nacelle mounted on strut. If all these compo-
nents have to be integrated into the grid an H-type sectionwise global grid seems appro-
priate. For H-sections one family of grid lines will approximately follow the streamlines
so that the lifting surfaces can be represented as interior slits. In the spanwise
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direction the grid lines should enclose the wing forming an "0". Compared with an H-type
spanwise grid, an 0-grid will save 25-30% of the grid points and thus computer time. In
conclusion, the global grid now has an H-0-structure with respect to the wing. The addi-
tional components of the aircraft can be integrated into the mesh as follows:

" The fuselage can be mapped directly into the global grid. The grid structure with re-
spect to the fuselage is then H-H. Another possibility is to embed a local 0-0 grid
around the fuselage into the global grid. This grid arrangement is sketched in
Figure 1. Compared to the first alternative the arrangement with the embedded subgrid
will save 40% of the grid points when generating grids for a numerical solution of the
Euler equations. For a numerical solution of the Navier Stokes equations the total
number of grid points may be reduced by 60%.

" The horizontal tailplane can be represented as an interior slit in both the global H-0
grid and the subgrid of the fuselage. If the resolution of these grids is not good
enough in the region of the tailplane a local 0-0 subgrid can be embedded into theslit. The same procedure can be followed in the case of the vertical tailpiane.

" For the integration of the engine nacelle, a portion of the global grid below the wing
can be replaced by a polar subgrid, whose singularity is on the axis of the nacelle.
The resolution of the strut may give problems if it is highly swept. In this case it
should be advantageous to use additional singular grid points on the strut surface to
avoid highly skewed grid lines on it.

3. SURFACE DEFINITION

One of the basic requirements of a grid generator is to allow a complete mathemati-
cal description of all the aerodynamic surfaces under consideration. In practice, aerody-
namic surfaces are given by using cross sections; i.e., a fuselage is described by cross
sections along the body axis and a wing is given by airfoil sections in the spanwise
direction. The first step of the computational procedure is thus the generation of a
mathematical description of the surfaces which fits the input cross sections and provides
at least continuous derivatives up to first order. The description should contain the
intersection lines of the aerodynamic surfaces. A convenient method of surface definition
which meets these requirements uses Coons'patches [5].

Using the input cross sections any surface can be covered with a grid of patches. The
distribution of the cartesian coordinates over a single patch is considered now. For this
purpose two independent coordinates u, 0 5 u , I and w, 0 s w S I can be defined ac or-
ding to Figure 2. Following Coons a surface equation can be derived which gives ooth
continuous coordinates and continuous slopes across the boundaries u = 0, u = 1, w = 0,
w = 1. Defining the boundary curves of the patch as cubic polynomials the surface
equation can be written as

= t jT (1)

where = [x(u,w), y(u,w), z(u,w)] contains the components of the cartesian coordinates,

= [u
3
, u

2
, u, 1] = [w

3
, w

2
, w, 1]

and R is a matrix containing the parametric derivatives of I combined with blending func-
tions to provide continuity across the boundary curves. For each patch the elements of M
only need to be calculated once and stored.

Once the patches of all the surfaces have been defined, intersections of any two
surfaces can be calculated. A point I lying on the intersection line of two patches must
satisfy equation (1) for each patch. Then, setting these equations equal, three non-line-
ar algebraic equations for the four parametric coordinates of the two patches are genera-
ted. If one of the parameters is fixed, i.e. percent line of the wing, the equations can
be solved to give the corresponding point on the intersection line.

In conclusion, all the aerodynamic surfaces are continuously described by dividing
them into a number of Coons' patches, which use two parametric surface coordinates u and
w. Hence, a unique transformation I = f(u, w) has been established for each patch. In
addition to the possibility of calculating intersections between any two surfaces, this
transformation can also be used for the generation of surface grids. This is described in
section 4.

4. GRID GRATION SYSTEM

At the present time the choice of a specific grid generation system seems to be
based more on the engineer's intention and his particular experiences than on established
theorems. In our case it is felt that an elliptic generation system offers the most fle-
xibility to treat complex three-dimensional geometries. In particular, for H-topologies,
is seems to be rather difficult to use algebraic generation equations to generate smooth
grids without any overlap of grid lines.

. . ... ...
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For the numerical solution of an elliptic system in a three-dimensional computatio-
nal domain, the definition of the grid point distribution at the boundaries of the domain
is required. Hence, a three-dimensional field grid generation system and a two-dimen-
sional surface grid generation system have to be specified. Surface grids must be genera-
ted at the farfield boundaries of the computational domain and on the surface of the
aircraft configuration. The grids on the surface will in turn influence the field grid
close to the surface, where high flow gradients are expected. Hence, the generation of
proper surface grids is an important aspect of the total problem. In the following we
will first introduce the generation system for three-dimensional fields and then discuss
the surface grid generation system.

4.1 Generation System of Field Grids

Thompson et al [6] have given an elliptic generation system

2 -

I. + y . = J, T (2)

for the curvilinear codinakes = [&, n, C]T. Here J2 denotes the square of the Jacobian
and the elements of A = [ Bc] are functions of the transformation coefficients. The
Laplace operator on the left hand side of system (2) will provide a smooth distribution
of the coordinates t in physical space. Furthermore, it has beeen shown [7], that thS
system (2) exhibits an extremum principle, if the inhomogenuous functions P = [P, Q, R]

T

vanish, i.e. the generation system then guarantees a one-to-one mapping for boundary-con-
forming curvilinear systems on general closed boundaries. However, this condition with
respect to P is not necessary to generate non-overlapping grids and, in practice, the
source terms P which are used to control spacing and orientation of grid line will have
to be large and change their sign within the field in order to generate suitable grids.
The determination of these terms will be discussed in section 4.3.

In order to obtain the location vector 1 = f() it is convenient to interchange .he
role of dependent and independent variables in equation (2), which gives a quasilinear
elliptic system for the cartesian position vector :

+ Px) + B(xnn + 0x) + C(xcc + RxC) + 2(Dx&n + E + FxT) = 0 (3)

The coefficients A to F are related to the transformation coefficients 2-, v and I .
Equation (3) can be solved in the computational domain to yield the locatio vetor I it
each discrete value of t. For this purpose a conventional successive line relaxation
method is currently used.

4.2 Generation System of Surface Grids

Surface grids are generated using two parametric coordinates. In the most simple
case the surface lies in a plane in physical space, i.e. z = const. In this case the
other two cartesian coordinates x and y can be used as parametric coordinates. A typical
application of this is the generation of a surface grid in the symmetry plane of a wing.
If a grid has to be generated on the surface of an aircraft configuration it is clear
that the parametric coordinates u and w of the Coons' patches from section 3 can be used.
For example, the parametric coordinates u and w on a fuselage may be defined as sketched
in Figure3a. The problem is now, the generation new curvilinear coordinates &, ) on this
surface (Fi ure 3b) which conform to the intersection between fuselage and wing.

Thompson et al [6] have derived a general elliptic surface grid generation system
which takes into account the partial derivatives of the transformation I = T(u, w), rela-
ting to curvature, skewness or stretching of the Coons' patches. Using this generation
system the surface grid will be virtually independent of the original definition of the
Coons' patches. In our particular case, generating a surface grid on an aircraft fuse-
lage, there are no problems associated with the metrics of the parametric coordinates. On
most of the fuselage surface the new curvilinear coordinates will follow the parametric
coordinates closely. Furthermore, the coqrdinates u and w of the Coons' patches and the
new curvilinear coordinates t = [&, ]' will both have two singular points, one at the
nose of the fuselage and one at the tail.

In the present work the surface grids are therefore generated using simply the two-
dimensional version of system (2)t

&uu + &ww = P j A
2 (4)

'lou + 'lww = a J B

in the parametric u-w domain. The source terms P and 0 are used to control the spacing of
the surface grid. Their determination is given in section 4.3.

I.
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4.3 Iterative Grid Control

The source terms P [ P, 0 R] can be used to control spacing and orientation of the
curvilinear coordinates in physical space. A user of the grid generation code usually
wants to cluster grid lines in regions where he expects the flow gradients to be high.
For example he may wish to specify a certain grid spacing close to the aerodynamic sur-
face. As an alternative the user may choose a particular plane in the computational do-
main for which a point distribution is to be prescribed. This certain plane may be a
boundary of the computational domain or it may be an interior plane, at which a desired
point distribution is to be specified. Thompson (6] has given a relatively simple esti-
mate of the source terms in order to achieve a desired point distribution. For example,
let n = const. be the plane under consideration. Assume that the coordinate line on which
r varies crosses that plane orthogonally and that the curvature of the coordinate line on
which n varies is zero. The source terms P and R then may be written

P = - - - - (5)

where s denotes the arc length distribution along the coordinates C and C. Similar ex-
pressions can be given for source terms on planes C = const and C = const. Once the sour-
ce terms have been evaluated on certain planes they can be interpolated in the whole
region. Generally, the resulting grids will not exhibit the desired point distribution on
the planes which were initially used to evaluate equation (9), because both skewness and
curvature of the lines crossing those planes are not taken into account. The grid lines
will move toward convex boundaries and they will move away from concave boundaries. This
tendency is sketched in Figur 4 for the case of a C-grid around a highly cambered air-
foil. Thompson at al (8] have given expressions which take into account the curvature of
the boundaries of the computational domain. However, the curvature of the boundary will
not necessarily reflect the curvature of the grid lines in the field. Furthermore it may
be difficult to evaluate the curvature at boundaries of an H-type topology as shown in
Figure 5.

As both curvature and skewness of the grid lines come out as a part of the solution
and therefore cannot be calculated beforehand, an iterative determination of source terms
has been developed. In order to obtain a desired point distribution on certain planes of
the computational domain the source terms are adjusted throughout the whole solution
process. Prom here on, these planes will be called target planes. On a target plane

= conet target values of the grid stretching (scE/s)o and (sC/sC)o can be calcula-
ted from the desired point distribution on that plane. The iterative solution of the
elliptic system (5) yields new values of the coordinates after each iteration n. From
these new coordinates actual values of (s/&IC)n can be computed. The difference between
target values and actual values of the grid stretching can be used to adjust the source
terms on the target plane as follows:

Pn+l =Pn +cp [t] n-[g] ](6
To obtain a stable iteration scheme it was found necessary to add a damping term

such as the derivative of the difference between target values and actual values with
respect to the iteration number. The final iteration formula then reads:

Pn+l = Pn + cp [[ f] n [sE] 0+ cT [[ ]I- n- [:-]n-l] (7)

Analogous expressions follow for the iterative determination of R. Once the source
terms P and R have been obtained on the target plane, they can be interpolated in the
entire domain and the solution algorithm can proceed to the next iteration. The converged
solution will yield a coordinate grid for which (a /s ) = s /s )3 is valid on the
target plane and which is smooth in the entire domain. n he .aS'.f'generation of two-
dimensional surface grids, the target planes reduce to target lines on which one source
term can be evaluated from the arc length distribution.

Values of the coefficients c = 0.1 and cT= 0.2 have been determined empirically. It
has been found that the converglnce behavior of the numerical solution with iterative
grid control is not very sensitive with respect to cpand cT.

5. MTI-SLOcK STRUCTURED COMH ATIOUAL PROCEDURE

In order to enable the treatment of complex configurations a multi-block structured
grid generation code has been developed. In the multi-block approach a complicated multi-
ply connected computational domain is split into a number of simply connected cubes. The
solution algorithm is completely independent of the specific configuration under conside-
ration. The definition of the information which is necessary to describe a general block
structured domain has been fixed in cooperation with DORNIER Company and SUPRENUM Company
and has already become a software standard [8). This definition of the block structured
domain is given in the following subsection. Afterwards a brief outline of the computer
program is given. This subsection is illustrated by the results for a typical wing-body
combination.
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5.1 Definition of Block Structured Doaina

A single block is formed by a right-hand system of the computational coordinates
ij1,IL, J-1,JL, k-I,KL. The six block boundaries are numbered according to Figure 7a.
The connection of blocks to form general regions is completely arbitrary and does not
depend on the numbering of the blocks. The information necessary to define general re-
gions is stored as follows:

" Each block boundary can be divided into an arbitrary number of segments, which either
correspond to a segment of a neighbor block (inner cut) or are a part of the outer
boundary of the computational domain. The dimension of the segments is fixed by a regu-
lar, non-equidistant segment grid on each block boundary. The segment grid is defined
by an integer number IJKL for each block boundary

IJ Number of segments in first cyclic direction at the block boundary

KL Number of segments in second cyclic direction at the block boundary

and an integer array MNOPQR (O:ID) with IDS MAX(IJ, KL) for each block boundary

KNO(I) Value of block coordinates in first cyclic direction at the segment grid
lines.

PQR(I) Value of block coordinates in second cyclic direction at the segment grid
lines.

The use of IJKL and MNOPQR is illustrated in Figure 7b.

" The neighbors of the blocks are defined using the integer numbers IJKLMN (ID, ID)
and OPQR (ID, ID) for each block boundary. IJKLMN is coded for each segment as
follows:

IJK Number of the neighbor block. For IJK = 0 the segment is a part of the boundary of
the computational domain.

L Number of the neighboring block boundary

MN Definition of the index orientation of the neighboring segment according to
Figure 7.

The integer array OPOR is coded for each segment as follows:

OP Number of the neighboring segment in first cyclic direction of the segment grid.

QR Number of the neighboring segment in second cyclic direction of the segment
grid.

Using the integers IJKL, MNOPQR,IJKLMN, OFQR arbritrarily connected block structures
are completely described.

5.2 Outline of the Grid Generation Code

The present grid generation code can be divided into three major parts, namely sur-
face definition, surface grid generation and field grid generation. The results of each
of the three mayor parts of the code are stored in a file. Therefore, the code can be run
step by step, which allows the user to check the results of each step before proceeding
to the next.

5.2.1 Surface Definition

The starting-point for the definition of the aerodynamic surfaces is the input of
discrete surface sections. These input sections are shown for a typical transport confi-
guration in Figure Ba. Cubic splines over arc length distributions are used to interpola-
te a smooth grid of Coons patches on the fuselage. On the wing cubic splines in the sec-
tionwise direction and linear interpolation between the input sections in the spanwise
direction are used. A smooth and closed grid around the wing tip is generated. For this
purpose a series of superellipses is applied to the planform and the thickness of the
wing in the region near the tip. The grids of Coons' patches for both the wing and the
fuselage are shown in Figure 8b. The elements of R are calcu'ated according to equation
(1) and stored for all the patches. Finally the values of u and w at the intersection of
wing and fuselage are calculated for fixed percent lines of the wing grid (see section
3). For each intersection point the system of three non-linear equations is solved by a
library secant method for simultaneous non-linear equations [9]. It was found to give
rapid convergence for all the configurations analysed to this point.
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5.2.2 Surface Grid Generation

In the present version of the program the surface grid generation step contains
those parts of the code which depend on the particular configuration under considertion.
In the future, however, it is intended to generate the surface grids interactively on a
work station. The choice of an appropriate grid topology for wing-body combinations has
been discussed in section 2. Obviously surface grids have to be generated on the wing,
the body, the farfield boundaries, in the symmetry plane of the grid and on all the fic-
titious inner cuts between the blocks. There are upper and lower blocks for the global
H-0 grid around the wing and upper and lower blocks around the fuselage. Note that gene-
ration of surface grids on fictitious inner cuts is necessary only to provide an initial
grid for the field grid generation step. However, sometimes it may be useful to fix the
coordinates at inner cuts. (See section 5.2.3).

Initially, algebraic grids are generated for all boundary segments of the three-di-
mensional domain. For any of these segments, the surface grid can be improved by solving
the elliptic system (4). In this case a two-dimensional counterpart to the logic for the
field blocks (see section 5.1) is provided automatically from the block structure of the
field grids. To control the grid spacing at the boundary segments, target lines may be
specified for each two-dimensional surface block (see section 4.3). The present code
provides two options to determine target values of ts&/sC)O along a coordinate line on
which i varies:

" Option INITIAL DISTRIBUTION
(s /s&) O is calculated from the arc length distribution of the algebraic grid

12 i- -
2 s

i 
+ 

Si+l
si+l - si-i

" Option GEOMETRIC PROGRESSION

From a specified grid spacing at i=l, as and the distance sIl - s1 the ratio r of suc-
cessive grid intervals is calculated, so that s = Asr -1)/(r-I). The finite
difference approximation of (s&/s )O is 2(r - l)/r + I). It is constant along i.

Now the solutions of the two-dimensional elliptic system can be calculated. All the
2-D grids are stored end-to-end in singly- dimensioned arrays in the main program. The
corresponding arrays of the subroutines are multiply-dimensioned with their size and
starting location passed through COMMON and arguement lists. Therefore, no I/0-work is
required when the algorithm passes from one block to the next. The improvements of grid
quality which can be obtained using iterative grid control are displayed in Figure i.
Figure 

9
a shows the surface grid of a fuselage without any source terms. A surface grid

with the sources determined according to equation (5) is shown in Figure 9b. Iterative
grid control has been used for the surface grid of Figure 9c. The resolution of this grid
is much better in the leading edge and trailing edge regions where large gradients of the
flow are expected.

In the present example of a transport configuration elliptic grid generation is
performed on the fuselage surface, the symmetry plane and the upstream and downstream
farfield boundaries.

5.2.3 Field Grid Generation

Once the block-structured domain has been defined and the surface grids have been
generated and stored (see section 5.2.2) grid generation proceeds in a manner independent
of the particular configuration.

To initiate the numerical solution of the three-dimensional elliptic system all the
surface grids of the boundary segments are collected from file. Then trilinear transfini-
te Lagrange interpolation is used to generate the initial grids in the interior of the
blocks. TO control the grid spacing, target planes may be chosen for each three-dimensi-
onal field block (see section 4.3). On each of these target planes two source terms may
be specified which are determined from the distribution of arc length in the two coordi-
nate directions of the plane. For example, on a plane on which j - const the source terms
P and R are determined from the arc length distributions in the i- and k-directions,
respectively. The present code provides three options to determine the target values of
the source terms. In the case of the source term P there are:

" Option INITIAL DISTRIBUTION PLANE
(s /s&) O is calculated from the arc length distribution of the initial grid

2 si-l -
2
si + Si+i

ai+l - si- I

" Option INITIAL DISTRIBUTION BOUNDARY
(a /s )O is calculated from the arc length distribution of the initial grid at k=1 and
k5 'adois linearily interpolated for intermediate values of k.

k
4
Eiaim a n m

ido
a
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0 Option GEOMETRIC PROGRESSION
From a specified grid spacing at i=l, As and the distance SL - s1 th ratio of
successive grid intervals r is calculated, so that s

5
L - s= As(r -- l)/(r-l). The

finite difference approximation of (s&/sC)0 is 2(r - l)71r + I).

When specifying the source terms P, Q and R care must be taken that the sources are
not overspecified. Each source term must be specified using one family of target planes
only. For example, the sources P may not be specified using both target planes i=const
and j=const. Furthermore, care should he taken that the specified target values of the
source terms cre physical, which means one can expect a numerical solution of equation
(3) to exist which fulfillL the target values of the arc length distributions without
excessive skewness or cross-over of grid lines.

Now the solutions of the three-dimensional elliptic system can be calculated. As in
the surface generation step singly-dimensioned arrays in the main program and multiply-
dimensioned arrays in subroutines are used to store the grids. However, due to the limi-
ted amount of main memory of the Cray I-S computer used in the present work, only one
field block is kept in the main memory at a time. At each iteration step of the solution
algorithm each block is read from disk (BUFFER-IN), the iteration is executed and the
block is written back to disk (BJFFER-OUT). The Record-Addressable READMS/WRITMS package
is used for the exchange of the grid points on fictitious inner cuts. The ratio between
I/0 and CPU-time is about 3.

In order to reduce the computational expense of the grid generation method, succes-
sive grid refinement can be used in the field grid generation step. The solution of the
coarse grid is interpolated and used as input for the refined grid calculation. Us'ng
this strategy, the iterative determination of the source terms, which can require several
hundred iterations, can be done mainly on the coarsest grid. The task of the iterations
on the finer grids is to smooth the intial interpolated grids, which only requires seve-
ral dozen iterations. The convergence of the field grid generation method may be affected
by the problem of cross-.ver of grid lines near singular points or lines of the grid. The
H-O-topolgy of the present global grid shows two parabolic singular lines emanating from
the wing tip. There is a natural tendency of the grid lines running around the singular
lines to move very close to these lines. Although the continuum equations (2) possess a
maximum principle under certain conditions this property does not apply to the discrete
equations. Furthermore the initial solution with respect to both k and P may be so far
away from the final converged solution, that cross-over of grid lines without recovery
occurs near the singular lines even if a converged solution without cross-over does
exist. The cross-over problem has also been addressed by Weatherill et al [10]. In the
present work converged solutions for H-O-topologies have been obtained by

" generating a smooth surface grid on the last spanwise plane k=KL in the surface grid
generation step and then fixing the coordinates on this plane in the field grid genera-
tion step,

" solving the elliptic system first with the Source terms in quasi-spanwise direction R=0
for some hundred iterations on the coarse grid and then introducing the complete itera-
tive grid control.

Clearly, the problem of grid cross-over near singular lines has not been solved
satisfactorily with the present work and will require future effort.

To demonstrate the capabilities of the present method, field grids around a typical
wing-body combination have been generated using 92 x 40 x 12 cells in the global H-0 grid
around the wing and 76 x 24 x 4 cells in the local 0-0 grid around the body. The numeri-
cal solution of the elliptic system was obtained using one grid refinement. Several views
of sections of the final grid are shown in Figure 10. Both the wing and the fuselage are
well resolved.

As a second application a grid around an isolated axisymmetric nacelle has been
generated using the two dimensional part of the grid generation code only. I .is case
three blocks have been used to form an H-grid sectionwise and a polar struct, - in cir-
cumferential direction. Figure 11 shows, that all components of the configuration are
well resolved.

6. CONCLUSIONS

A new grid generation code has been developed which is based on the multi-block
approach. Grid generation around complex three- dimensional configurations is divided
into three major parts, namely surface definition, surface grid generation and field grid
generation. Surface definition is done using Coons' patches. Surface grids and field
grids are generated using the numerical solution of an elliptic system. The elliptic
system provides smooth grids in the interior of the computational domain, even if the
distribution of grid points at the boundaries is not smooth. An effective means for the
control of the grid spacing in the field has been developed which uses an iterative de-
termination of the source terms in the elliptic system.
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The code has been used to generate a grid around a wing-body combination which is
typical for transport aircraft. As a further step towards the representation of complete
transport aircraft, a grid around an isolated nacelle has been generated. The grids show
a good resolution of the aerodynamic surfaces.
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Btock boundaries k

k

a) Grid in symmetry plane and on body surface b) Grid in spanwise section

Fig. 1: Grid topology for wing-body combination

Coons' patch

\

o00) ' (0.1)

Fig. 2: Definition of Coons' patch

a) Distribution of the parametric coordinates u and w
on a fuselage

b) Curvilinear surface coordinates and C on a fuselage

Fig. 3: Surface grid generation
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Spacing smalUer

than specified
Spacing [orger
than specified

Fig. 4: Influence of surface curvature Fig. 5: H-type grid around airfoil showingon grid spacing 
discontinuity of slope at the

leading edge
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02 Li F-
a) Numbering of the block boundaries

03 L
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11 7

7 ~ 12 L

K 1114 6 2
ZJKL - 0303MNOPQR(0) - 002002 Fig. 7: Definition of index orientation of.OPQR (1) - 006005
MNOPR(2)- 009007 neighboring segmentsVOJPQR(3) - 014011

b) Definition of segment grid at block
boundary i=l

Fig. 6: Definition of block boundaries
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a) Input sectious for wing and fuselage

b) Grid of Coons' patches on wing and fuselaqe

Fig. 8: Surface definition of the DFVLR-F4 Wing-Body

a) Laplace grid on fuselage

Fig. 9: Surface grid generation for DFVLR-F4 Wing-Body
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b) Grid onfusuelage with source terms evaluatedfrom equation (6)

c) Grid gon fuselage with iterative grid controlungthe options INITIAL DISTRIBUTION instreawise direction and GEOMETRIC PROGRESSIONin normal direction

d) Final surface grid of wing and body

Fig. 9: continued
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a) Sectionwise grid at the root of the wing

b) Sectionwise grid at the kink of the wing

Fig. 10: Views on field grid around D)FVLR-F4 Wing-Body
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c)Spanwise grid around the fuselage upstream
of the wing

d) Spanwiae grid at midcliord station of the wing

Fig. 10: Continued
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c) Grid in the leading edge region
with coordinates fixed on the cut

upstream of the nacelle

a) Nacelle and grid in the symmetry plane

b) Enlarged view of nacelle and grid in the symmetry plane

Fig. 11: Coordinate grid around nacelle
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